Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(7): 593, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829441

ABSTRACT

Coal power activities could cause regional fluctuations of trace elements, but the distribution information of these trace elements in arid and semi-arid areas is insufficient. In this study, the soil trace elements (As, B, Be, Cd, Co, Cr, Cu, Fe, Ga, Ge, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, and Zn) of Ningdong Coal Power Production Base in China were monitored. Results showed that the concentrations of B, Tl, Mn, Pb, Cr, K, Cu, and Co exceeded background values. The maximum risk index reached 265.66, while the trace elements posed a cancer risk to children. Combining correlation analyses (CA), principal component analysis (PCA), and positive matrix factorization (PMF) techniques, it indicated that trace elements were mainly coming from coal combustion (34.15%), livestock farming (17.44%), traffic emissions (12.42%), and natural factors (35.99%). This study reveals the sources and potential ecological risks of soil trace elements in the Ningdong Coal and Power Production Base. It provides a scientific basis for developing targeted environmental management measures and reducing human health risks.


Subject(s)
Coal , Environmental Monitoring , Soil Pollutants , Soil , Trace Elements , China , Trace Elements/analysis , Soil Pollutants/analysis , Soil/chemistry , Power Plants , Humans
2.
Environ Res ; 251(Pt 1): 118607, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38431071

ABSTRACT

Ecological remediation with native plants is the main measure to control the pollution of solid waste in Northwest China. However, the heavy metal transport characteristics of these native plants are still unidentified. This study analyzed the distribution of 16 heavy metals in native plants in the desulfurization gypsum yard (DGY), the gangue yard (GY) and the fly ash yard (FAY). The results showed that the soil contained many heavy metals in high concentrations. For instance, As concentrations were comparable to the global soil background values, whereas Cr and Mn concentrations in the area were 2-3 times greater than the global soil background values. The content of heavy metals in the plant root system increased first, then decreased as the distance from the yard increased. Ni, Pb, and Cd migrated well in Artemisia frigida Willd and Artemisia sieversiana Ehrhart ex Willd, with A. sieversiana showing a particularly strong migration in GY. A. sieversiana, on the other hand, was more successful at migrating Cd at DGY and had a similar capability for Mg migration in all three locations. Festuca rubra L was potentially suitable for planting in GY for Ni removal. In conclusion, the migration patterns of different heavy metals were not alike for plants in the three landfills. The results provided a basis for plant selection for ecological restoration in arid and semi-arid regions.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , China , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Biodegradation, Environmental , Solid Waste/analysis , Soil/chemistry , Plants , Desert Climate
3.
Kaohsiung J Med Sci ; 21(8): 365-70, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16158879

ABSTRACT

Ketorolac is a potent nonsteroidal anti-inflammatory drug. Recently, a novel ester of ketorolac, ketorolac pentyl ester, was synthesized. When prepared in injectable oil, the new agent demonstrated a long duration of action. Ketorolac pentyl ester was synthesized using a prodrug design by esterification of ketorolac, and appeared to be a prodrug of ketorolac in vivo, which needed to be confirmed. The aim of the present study was to establish the prodrug's pharmacokinetics in vivo, and to confirm whether or not ketorolac pentyl ester was a prodrug of ketorolac. Pharmacokinetic profiles of intravenous ketorolac and its pentyl ester on an equal-molar basis in six rabbits were evaluated. A high-performance liquid chromatographic method was used to determine the plasma concentrations of ketorolac and its pentyl ester. We found that the plasma concentrations of ketorolac pentyl ester declined rapidly after injection and so did the conversion of ketorolac pentyl ester to ketorolac. Also, the conversion of ketorolac was proved complete when compared with intravenous ketorolac under an equi-molar basis. In conclusion, this in vivo pharmacokinetic study confirmed that keterolac pentyl ester was a prodrug of keterolac.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Ketorolac/pharmacokinetics , Prodrugs/pharmacokinetics , Animals , Area Under Curve , Esters/pharmacokinetics , Ketorolac/analogs & derivatives , Male , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...