Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Anal Chim Acta ; 1307: 342626, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719405

BACKGROUND: C-reactive protein (CRP) represents an early clinical biomarker that indicates the presence of inflammatory or infectious conditions in the human body. Today's procedures approved by the Food and Drug Administration (FDA) imply expensive equipment and highly trained personnel to perform the test. Therefore, a new diagnostic method with high detection efficiency and less cost is urgently needed for delivering rapid and timely results in point-of-care (POC) service. RESULTS: Herein, we propose a new, equipment-free, and portable sensing method for the future POC detection of CRP based on the Tyndall effect (TE). In our study, aptamer-conjugated citrate-stabilized gold nanoparticles (apta-AuNPs) are exploited as the sensing platform. The apta-AuNPs' interaction with CRP in a saline environment leads to their aggregation, thus enhancing the scattering of light when the solution is exposed to a 640 nm pointer laser line. Firstly, the enhancement of the scattering light as a function of increasing concentration of CRP in solution is measured spectroscopically using a typical 90-degree angle spectrofluorometer and then the measurements are compared to the classic colorimetric detection using an UV-Vis spectrophotometer. Finally, to achieve high portability and accessibility, we demonstrate that the measurement of CRP concentration can be performed with similar accuracy but in a more direct and inexpensive way by using a laser pointer pen as the excitation source and a camera of a low-budget smartphone as a quantitative reader instead of most expensive spectrofluorometer. SIGNIFICANCE: The portable TE-based assay exhibits a wide linear dynamic range (1-60 µg/mL) for the detection of CRP with a limit of detection (LOD) of 92 ng/mL The proposed method is capable to integrate both standard and high-sensitivity CRP analysis in a single procedure with increased sensitivity and prompt delivery of analysis results. Moreover, the sensing procedure is significantly faster than the FDA approved ones with a detection time of only 10 min. Finally, as a proof-of-concept, our findings demonstrate excellent recovery for CRP detection in spiked and diluted urine samples, highlighting the strong potential of this sensing method for POC applications.


Aptamers, Nucleotide , C-Reactive Protein , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , C-Reactive Protein/analysis , Aptamers, Nucleotide/chemistry , Humans , Biosensing Techniques , Limit of Detection , Colorimetry , Point-of-Care Systems
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article En | MEDLINE | ID: mdl-36430201

Photothermal therapy (PTT) is gaining a lot of interest as a cancer treatment option with minimal side effects due to the efficient photothermal agents employed. They are based on nanomaterials that, upon laser irradiation, absorb photon energy and convert it into heat to induce hyperthermia, which destroys the cancer cells. Here, the unique light-to-heat conversion features of three different gold nanotriangular nanoparticles (AuNTs) are evaluated with respect to their absorption properties to select the most efficient nanoheater with the highest potential to operate as an efficient photothermal agent. AuNTs with LSPR response in- and out- of resonance with the 785 nm near-infrared (NIR) excitation wavelength are investigated. Upon 15 min laser exposure, the AuNTs that exhibit a plasmonic response in resonance with the 785 nm laser line show the highest photothermal conversion efficacy of 80%, which correlates with a temperature increase of 22 °C. These photothermal properties are well-preserved in agarose-based skin biological phantoms that mimic the melanoma tumoral tissue and surrounding healthy tissue. Finally, in vitro studies on B16.F10 melanoma cells prove by fluorescence staining and MTT assay that the highest phototoxic effect after NIR laser exposure is induced by AuNTs with LSPR response in resonance with the employed laser line, thus demonstrating their potential implementation as efficient photothermal agents in PTT.


Melanoma, Experimental , Metal Nanoparticles , Animals , Gold/pharmacology , Phototherapy , Metal Nanoparticles/therapeutic use , Photosensitizing Agents , Melanoma, Experimental/therapy
3.
Nanophotonics ; 11(12): 2827-2863, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35880114

Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.

4.
Talanta ; 247: 123581, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35636370

Beside attractive electrical, thermal and mechanical properties, graphene oxide (GO) exhibits visible and near-infrared (NIR) photoluminescence (PL) and well-defined fingerprint Raman bands which are remarkable optical signatures to implement GO as new contrast agent for the visualization of cells or tissue, including cancer tumors. However, the biomedical use of GO as optical contrast agent is to some extent hindered by the intrinsic low emission efficiency especially at neutral pH. Herein, we successfully modulate the PL of GO nanoflakes in acidic and neutral medium by passivating them with polyvinylpyrrolidone (PVP), an amphiphilic and biocompatible polymer, thus improving the PL at pH relevant for biomedical applications. We demonstrate the potential of as-fabricated PVP-GO nanocomposites to operate as dual Raman-PL contrast agents inside tissue-like agarose-phantoms via scanning confocal Raman microscopy (CRM) under excitation at 532 nm. Super-resolution re-scan confocal microscopy (RCM) was further employed to investigate the distribution of PVP-GO inside biological phantoms at 3D level under three excitation lines (405, 488, and 561 nm). Finally, two-photon excited fluorescence lifetime imaging microscopy (TPE-FLIM) at 810 nm excitation reveals the ability of PVP-GO to serve as NIR-activatable contrast agent inside tissue-like phantom. Notably, PVP coating empowers GO nanoflakes not only with enhanced optical signature, but also with excellent dispersibility inside biological phantoms, thus offering improved labeling performance of as-designed imaging contrast agent.


Graphite , Povidone , Contrast Media , Graphite/chemistry , Microscopy, Confocal
5.
Lab Chip ; 22(5): 994-1005, 2022 03 01.
Article En | MEDLINE | ID: mdl-35137754

Biosensors exhibit high potential for the detection of analytes of interest at the point-of-need. Over the past two decades, the combination of novel biosensing systems - such as electrochemiluminescence (ECL) biosensors - and advances in microfluidic techniques has allowed the development of lab-on-a-chip devices with enhanced overall performance and simplified sample handling. However, recording data with conventional platforms requires advanced and complicated instruments, such as sensitive photodetectors coupled to microscopes, to capture the photons from the chemiluminescent reaction. In this work, we integrated microfluidic and luminol/hydrogen peroxide ECL systems on a complementary metal-oxide-semiconductor (CMOS) chip for sample handling and data collection on the same platform. This was achieved by the adaptation of a single electrode as an electrochemical transducer and a CMOS chip as a built-in detector. We demonstrated the application of this platform for the detection of uric acid (UA), a biomarker of gout disease. A linear detection range was observed from 25 to 300 µM, with a detection limit (LOD) as low as 26.09 µM. The device showed high reusability and reproducibility within the linear detection range while maintaining high selectivity for UA detection. The analytical performance has also been evaluated in simulated saliva and urine samples, demonstrating the potential utility in medical diagnosis at the point-of-need. Compared to other ECL imaging platforms, this device showed an eightfold increase in photon collection efficiency. Overall, this approach has promising potential as an inexpensive, portable, and efficient ECL platform for measuring analytes at the point-of-need.


Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Luminescent Measurements , Oxides , Reproducibility of Results , Semiconductors
6.
Nanoscale Adv ; 3(14): 4119-4132, 2021 Jul 13.
Article En | MEDLINE | ID: mdl-34355118

One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aß) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aß associated with AD. However, characterization of the EVs-associated Aß and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aß present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aß is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aß peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aß associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aß that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.

7.
Talanta ; 228: 122242, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33773714

Gold nanoparticles are known to exhibit appealing intrinsic plasmon-modulated photoluminescence (PL) properties which can be explored in various fluorescence-based sensing applications. In this paper, we evaluate the PL of different-sized gold nanospheres (AuNSs) under one-photon excitation (1PE) and develop a sensitive homogeneous immunoassay for the detection of prostate specific antigen (PSA) in colloidal suspension via fluorescence correlation spectroscopy (FCS). The 1PE PL of AuNSs of three different sizes are evaluated in solution phase under excitation at 405 nm via steady-state fluorescence spectroscopy measurements, while FCS analysis emphasizes the feasibility of using 1PE PL properties to monitor their diffusion behavior. Fluorescence lifetime imaging microscopy (FLIM) assays coupled with PL spectral profile analysis performed on single-particles-like structures conform the plasmonic origin of the detected PL and validate their potential of synthesized AuNSs as fluorescent probes in bioimaging and bioassays. Finally, to the best of our knowledge, we provide the first demonstration of the successful use of the 1PE PL of the synthesized AuNSs as probes for the FCS-based one-step label-free sensitive optical detection of PSA biomarker. The approach consisting in monitoring the diffusion of the AuNSs-oligomers induced by the interaction of anti-PSA-conjugated AuNSs with PSA molecules is successfully validated for the detection of PSA levels as low as 4.4 ng/ml in solution. Considering that the development of rapid, efficient and label-free biosensing methods is of continuous interest nowadays, we are confident that our results may have a strong impact on medicine towards more efficient, sensitive and reliable diagnosis.


Metal Nanoparticles , Nanospheres , Gold , Humans , Male , Prostate-Specific Antigen , Spectrometry, Fluorescence
8.
Molecules ; 26(3)2021 Jan 25.
Article En | MEDLINE | ID: mdl-33504095

The silver content of the skin regeneration ointments can influence its regeneration process but in the meantime, it can take the benefit of the antibacterial properties of silver by avoiding the bacterial infection of an open wound. In the current study, the skin healing and regeneration capacity of bioactive glass with spherical gold nanocages (BGAuIND) in the Vaseline ointments were evaluated in vivo comparing the bioactive glass (BG)-Vaseline and bioactive glass with spherical gold (BGAuSP)-Vaseline ointments. Spherical gold nanocages are stabilized with silver and as a consequence the BGAuIND exhibits great antibacterial activity. Histological examination of the cutaneous tissue performed on day 8 indicates a more advanced regeneration process in rats treated with BGAuSP-Vaseline. The histopathological examination also confirms the results obtained after 11 days post-intervention, when the skin is completely regenerated at rats treated with BGAuSP-Vaseline compared with the others groups where the healing was incomplete. This result is also confirmed by the macroscopic images of the evolution of wounds healing. As expected, the silver content influences the wound healing process but after two weeks, for all of the post-interventional trials from the groups of rats, the skin healing was completely.


Glass/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Regeneration/drug effects , Silicates/chemistry , Skin/drug effects , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Female , Humans , Rats , Silver/chemistry
9.
J Mol Struct ; 1246: 131178, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-36536692

Human C-reactive protein (CRP), an early clinical indicator of infectious or inflammatory conditions has been recently identified as a key biomarker associated with the development of COVID-19. The rapid and accurate determination of CRP level in blood serum is an urgent need to predict timely the risk of disease worsening. The emergence of nanotechnological tools has provided an attractive perspective in designing portable bioanalytical assays with fast response time, high sensitivity and specificity, and multiplexing capability for accurate, on-site disease diagnosis and monitoring. Due to their versatile optical properties, plasmonic nanoparticles (PNPs) are appealing candidates for biosensing applications. This review summarizes the advances in the application of PNPs for CRP detection and quantification. Particularly, we review the improvements attained in the detection of CRP using aggregation-based colorimetric, localized surface plasmon resonance (LSPR), plasmon-assisted fluorescence and chemiluminescence, and surface-enhanced Raman scattering (SERS) spectroscopic methods.

10.
J Mater Chem B ; 8(38): 8845-8852, 2020 10 07.
Article En | MEDLINE | ID: mdl-33026405

Using a regular CMOS sensor as a template, we are able to fabricate a simple but highly effective superhydrophobic SERS substrate. Specifically, we decorated the microlens layer of the sensor with 7 µm polystyrene beads to obtain a PDMS patterned replica. The process resulted in a uniform pattern of voids in the PDMS (denoted nanobowls) that are intercalated with a few larger voids (denoted here microbowls). The voids act as superhydrophobic substrates with analyte concentration capabilities in bigger bowl-like structures. Silver nanoparticles were directly grown on the patterned PDMS substrate inside both the nano- and microbowls, and serve as strong electromagnetic field enhancers for the SERS substrate. After systematic characterization of the fabricated SERS substrate by atomic force microscopy and scanning electron microscopy, we demonstrated its SERS performance using 4-aminothiophenol as a reporter molecule. Finally, we employed this innovative substrate to concentrate and analyze extracellular vesicles (EVs) isolated from an MC65 neural cell line in an ultralow sample volume. This substrate can be further exploited for the investigation of various EV biomarkers for early diagnosis of different diseases using liquid biopsy.


Dimethylpolysiloxanes/chemistry , Extracellular Vesicles/metabolism , Metal Nanoparticles/chemistry , Optical Devices , Polystyrenes/chemistry , Aniline Compounds/chemistry , Cell Line, Tumor , Extracellular Vesicles/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Silver/chemistry , Spectrum Analysis, Raman/methods , Sulfhydryl Compounds/chemistry
11.
J Colloid Interface Sci ; 552: 218-229, 2019 Sep 15.
Article En | MEDLINE | ID: mdl-31128402

Significant efforts are currently being funneled into the improvement of therapeutic outcomes in cancer by designing hybrid nanomaterials that synergistically combine chemotherapeutic abilities and near-infrared (NIR) light-activated photothermal (PTT) and photodynamic (PDT) activity. Herein, a nanotherapeutic platform is specifically designed to integrate combinational functionalities: chemotherapy, PTT, PDT and traceable optical properties. The system, based on chitosan-reduced graphene oxide (chit-rGO), incorporates and carries a large payload of IR820 dye with dual PTT and PDT activity and a chemotherapeutic drug, doxorubicin (DOX). The potential of the fabricated nanoplatforms to operate as an NIR activatable therapeutic agent is first assessed in aqueous solution by investigating its ability to generate singlet oxygen and heat under NIR irradiation with 785 nm laser irradiation. The in vitro anticancer activity of chit-rGO-IR820-DOX is evaluated against murine colon carcinoma cells (C26). The fabricated nanosystem exhibits synergistic anticancer activity against C26 cancer cells by combining IR820 induced PDT, simultaneous graphene and IR820 induced PTT and the chemotherapeutic effect of DOX. Notably, the therapeutic performance of chit-rGO-IR820-DOX can be controlled by the ratio between IR820 and DOX. Moreover, chit-rGO-IR820-DOX facilitates localization inside cancer cells correlated with the release of DOX via mapping by confocal Raman microscopy.


Antibiotics, Antineoplastic/pharmacology , Coloring Agents/pharmacology , Doxorubicin/chemistry , Photosensitizing Agents/pharmacology , Animals , Antibiotics, Antineoplastic/chemistry , Cell Proliferation/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Coloring Agents/chemistry , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Graphite/chemistry , Graphite/pharmacology , Indocyanine Green/analogs & derivatives , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Infrared Rays , Mice , Microscopy, Confocal , Optical Imaging , Photochemotherapy , Photosensitizing Agents/chemistry , Phototherapy , Spectrum Analysis, Raman , Tumor Cells, Cultured
12.
Nanotechnology ; 30(31): 315701, 2019 Aug 02.
Article En | MEDLINE | ID: mdl-30974419

This paper presents the fabrication and characterization of new gold-silver core-shell nanoparticles labeled with para-mercaptobenzoic acid (4MBA) molecules and demonstrates their use as surface-enhanced Raman spectroscopy (SERS)-nanotags with ultra-bright traceability inside cells and ability to convey spectrally-coded information about the intracellular pH by means of SERS. Unlike previous reported studies, our fabrication procedure includes in the first step the synthesis of chitosan-coated gold nanoparticles as a seed material with subsequent growing of a silver shell. The bimetallic core-shell structure is revealed by transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, energy-dispersive x-ray elemental mapping and the presence of two interacting localized surface plasmon resonance modes in UV-vis extinction spectrum. The high SERS activity and sensitivity of as fabricated 4MBA-chit-Au-AgNPs nano-constructs to different pH in solution is investigated under 532 and 633 nm laser lines excitation. Next, in view of future studies in cancer diagnosis, the in vitro antiproliferative effects of SERS-nanotags against human ovarian adenocarcinoma cells (NIH:OVCAR-3) are evaluated. The capacity to operate as bright SERS nanotags with precise localization at a single cell level as well as intracellular pH indicators is clearly demonstrated by performing cell imaging under scanning confocal Raman microscopy.


Gold/chemistry , Metal Nanoparticles/chemistry , Ovarian Neoplasms/diagnosis , Silver/chemistry , Spectrum Analysis, Raman/methods , Benzoates/chemistry , Cell Line, Tumor , Female , Humans , Hydrogen-Ion Concentration , Ovarian Neoplasms/chemistry , Sulfhydryl Compounds/chemistry
13.
ACS Appl Mater Interfaces ; 11(8): 7812-7822, 2019 Feb 27.
Article En | MEDLINE | ID: mdl-30707545

There is still a lack of available techniques to follow noninvasively the intracellular processes as well to track or disentangle various signals from the therapeutic agents at the site of action in the target cells. We present here the assessment of the intracellular kinetics of doxorubicin (DOX) and gold nanoparticle (AuNP) carriers by mapping simultaneously fluorescence and photoluminescence signals by fluorescence lifetime imaging microscopy under two-photon excitation (TPE-FLIM). The new nano-chemotherapeutic system AuNPs@gelatin-hyd-DOX has been fabricated by DOX loading onto the surface of gelatin-biosynthesized AuNPs (AuNPs@gelatin) through a pH-sensitive hydrazone bond. The successful loading of DOX onto the AuNPs was studied by spectroscopic methods and steady-state fluorescence, and the nanosystem pH-responsive character was validated under simulated biological conditions at different pH values (i.e., pH 4.6, 5.3, and 7.4). Considering that the fluorescence lifetime of DOX molecules at a specific point in the cell is a reliable indicator of the discrimination of the different states of the drug in the internalization path, i.e., released versus loaded, the kinetics of AuNPs@gelatin-hyd-DOX cellular uptake and DOX release was compared to that of free DOX, resulting in two different drug internalization pathways. Finally, cell viability tests were conducted against NIH:OVCAR-3 cell line to prove the efficiency of our chemotherapeutic nanosystem. TPE-FLIM technique could be considered promising for noninvasive, high-resolution imaging of cells with improved capabilities over current one-photon-excited FLIM.


Doxorubicin/metabolism , Drug Carriers/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Liberation , Gelatin/chemistry , Humans , Hydrazones/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Fluorescence, Multiphoton
14.
Colloids Surf B Biointerfaces ; 166: 135-143, 2018 Jun 01.
Article En | MEDLINE | ID: mdl-29558704

Nowadays, the non-linear optical effect of two-photon excited (TPE) fluorescence has recently grown in interest in recent years over other optical imaging method, due to improved 3D spatial resolution, deep penetrability and less photodamage of living organism owing to the excitation in near-infrared region (NIR). In parallel, gold nanoparticles (AuNPs) have gain considerable attention for NIR TPE bio-imaging applications due to their appealing ability to generate strong intrinsic photoluminescence (PL). Here, we demonstrate the capability of differently shaped gelatin-coated AuNPs to perform as reliable label-free contrast agents for the non-invasive NIR imaging of NIH:OVCAR-3 ovary cancer cells via TPE Fluorescence Lifetime Imaging Microscopy (FLIM). Examination of the spectroscopic profile of the intrinsic signals exhibited by AuNPs inside cells confirm the plasmonic nature of the emitted PL, while the evaluation of time-dependent profile of the TPE PL signal under continuous irradiation indicates the photo-stability of the signal revealing simultaneously a photo-blinking behavior. Finally, we assess the dependence of the TPE PL signal on laser excitation power and wavelength in view of contributing to a better understanding of plasmonic TPE PL in biological media towards the improvement of TPE FLIM imaging applications based on AuNPs.


Gelatin/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Cell Line, Tumor , Female , Humans , Microscopy, Fluorescence , Optical Imaging , Ovarian Neoplasms/diagnostic imaging , Photons
15.
ACS Appl Mater Interfaces ; 9(38): 32565-32576, 2017 Sep 27.
Article En | MEDLINE | ID: mdl-28872817

Ovarian cancer is a common cause of cancer death in women and is associated with the highest mortality rates of all gynecological malignancies. Carboplatin (CBP) is the most used cytotoxic agent in the treatment of ovarian cancer. Herein, we design and assess a CBP nanotherapeutic delivery system which allows combinatorial functionalities of chemotherapy, pH sensing, and multimodal traceable properties inside live NIH:OVCAR-3 ovarian cancer cells. In our design, a pH-sensitive Raman reporter, 4-mercaptobenzoic acid (4MBA) is anchored onto the surface of chitosan-coated silver nanotriangles (chit-AgNTs) to generate a robust surface-enhanced Raman scattering (SERS) traceable system. To endow this nanoplatform with chemotherapeutic abilities, CBP is then loaded to 4MBA-labeled chit-AgNTs (4MBA-chit-AgNTs) core under alkaline conditions. The uptake and tracking potential of CBP-4MBA-chit-AgNTs at different Z-depths inside live ovarian cancer cells is evaluated by dark-field and differential interference contrast (DIC) microscopy. The ability of CBP-4MBA-chit-AgNTs to operate as near-infrared (NIR)-responsive contrast agents is validated using two noninvasive techniques: two-photon (TP)-excited fluorescence lifetime imaging microscopy (FLIM) and confocal Raman microscopy (CRM). The most informative data about the precise localization of nanocarriers inside cells correlated with intracellular pH sensing is provided by multivariate analysis of Raman spectra collected by scanning CRM. The in vitro cell proliferation assay clearly shows the effectiveness of the prepared nanocarriers in inhibiting the growth of NIH:OVCAR-3 cancer cells. We anticipate that this class of nanocarriers holds great promise for application in image-guided ovarian cancer chemotherapy.


Nanostructures , Carboplatin , Cell Line, Tumor , Chitosan , Female , Humans , Hydrogen-Ion Concentration , Ovarian Neoplasms , Silver , Spectrum Analysis, Raman
16.
ACS Appl Mater Interfaces ; 8(35): 22900-13, 2016 Sep 07.
Article En | MEDLINE | ID: mdl-27537061

In this work, we developed a new pH- and temperature-responsive nanochemotherapeutic system based on Doxorubicin (DOX) noncovalently bound to biosynthesized gelatin-coated gold nanoparticles (DOX-AuNPs@gelatin). The real-time release profile of DOX was evaluated at different pH values (7.4, 5.3, and 4.6) and temperatures (22-45 °C) in aqueous solutions, and its therapeutic performance was examined in vitro against MCF-7 breast cancer cells. TEM, dark-field scattering, and wide-field fluorescence microscopy indicated the effective uptake of nanochemotherapeutics with the subsequent release and progressive accumulation of DOX in cell nuclei. MTT assays clearly showed the effectiveness of the treatment by inhibiting the growth of MCF-7 breast cancer cells for a loaded drug concentration of 5 µg/mL. The most informative data about the dynamic release and localization were provided by scanning confocal microscopy using time-resolved fluorescence and surface-enhanced Raman scattering (SERS) techniques. In particular, fluorescence-lifetime imaging (FLIM) recorded under 485 nm pulsed diode laser excitation revealed the bimodal distribution of DOX in cells. The shorter fluorescence lifetime of DOX localized in nuclei (1.52 ns) than in the cytoplasm (2.4 ns) is consistent with the cytotoxic mechanism induced by DOX-DNA intercalation. Remarkably, the few DOX molecules captured between nanoparticles ("electromagnetic hotspots") after most drug is released act as SERS reporters for the localization of plasmonic nanocarriers in MCF-7 cells. The high drug loading capacity and effective drug release under pH control combined with the advantage of multimodal visualization inside cells clearly indicate the high potential of our DOX-AuNPs@gelatin delivery system for implementation in nanomedicine.


Metal Nanoparticles , Doxorubicin , Drug Carriers , Drug Compounding , Drug Delivery Systems , Gelatin , Gold , Hydrogen-Ion Concentration , Multimodal Imaging
17.
Int J Nanomedicine ; 11: 641-60, 2016.
Article En | MEDLINE | ID: mdl-26929621

BACKGROUND AND AIMS: Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care. Two-thirds of patients achieve complete remission, although most of them ultimately relapse. Since the FLT3 mutation is the most frequent, it serves as a key molecular target for tyrosine kinase inhibitors (TKIs) that inhibit FLT3 kinase. In this study, we report the conjugation of TKIs onto spherical gold nanoparticles. MATERIALS AND METHODS: The internalization of TKI-nanocarriers was proved by the strongly scattered light from gold nanoparticles and was correlated with the results obtained by transmission electron microscopy and dark-field microscopy. The therapeutic effect of the newly designed drugs was investigated by several methods including cell counting assay as well as the MTT assay. RESULTS: We report the newly described bioconjugates to be superior when compared with the drug alone, with data confirmed by state-of-the-art analyses of internalization, cell biology, gene analysis for FLT3-IDT gene, and Western blotting to assess degradation of the FLT3 protein. CONCLUSION: The effective transmembrane delivery and increased efficacy validate its use as a potential therapeutic.


Drug Carriers , Drug Delivery Systems , Gold/chemistry , Leukemia, Myeloid, Acute/drug therapy , Metal Nanoparticles/chemistry , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Gold/administration & dosage , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Metal Nanoparticles/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
18.
Chem Biol Drug Des ; 87(6): 927-35, 2016 06.
Article En | MEDLINE | ID: mdl-26808072

This study presents the design of a gold nanoparticle (AuNPs)-drug system with improved efficiency for the treatment of acute myeloid leukemia. The system is based on four different FLT3 inhibitors, namely midostaurin, sorafenib, lestaurtinib, and quizartinib, which were independently loaded onto gelatin-coated gold nanoparticles. Detailed investigation of the physicochemical properties of the formed complexes lead to the selection of quizartinib-loaded AuNPs for the in vitro evaluation of the biological effects of the formed complex against OCI-AML3 acute myeloid leukemia cells. Viability tests by MTT demonstrated that the proposed drug complex has improved efficacy when compared with the drug alone. The obtained results constitute a premise for further in vivo investigation of such drug vehicles based on AuNPs. To the best of our knowledge, this is the first study that investigates the delivery of the above-mentioned FLT3 inhibitors via gelatin-coated gold nanoparticles.


Benzothiazoles , Coated Materials, Biocompatible , Drug Carriers , Gelatin , Leukemia, Myeloid, Acute , Metal Nanoparticles/chemistry , Phenylurea Compounds , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cell Line, Tumor , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Gelatin/chemistry , Gelatin/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Male , Middle Aged , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/metabolism
19.
Colloids Surf B Biointerfaces ; 132: 122-31, 2015 Aug 01.
Article En | MEDLINE | ID: mdl-26037701

It is useful to find new methods to synthesize and, more importantly, to control the size and shape of gold nanoparticles (AuNPs) without using relatively toxic-reducing agents and surfactants. In this work, we present a one-pot, green synthesis of AuNPs taking the advantage of gelatin biopolymer to operate as unique reducing, growth controlling and stabilizing agent in aqueous solution of tetrachloroauric acid (HAuCl4) at temperatures above its melting point (∼35°C). The shape and size of AuNPs were found to be strongly influenced by the gelatin concentration (0.5-5%), while the growth rate of AuNPs is controlled by temperature of synthesis (40-80°C) and viscosity of the biopolymer. A specific class of gelatin-coated AuNPs was selected to investigate its stability in simulated physiological conditions and cellular media and subsequently to evaluate the in vitro biocompatibility and capacity to sustain proliferation and differentiation of Osteoblast cells. Dark-field microscopy and Rayleigh scattering spectra prove a more efficient internalization of gelatin-coated AuNPs as compared with citrate-coated AuNPs, while methylthiazoltetrazolium bromide (MTT) assay demonstrates enhanced cell proliferation. Interestingly, in the presence of gelatin-coated AuNPs, we find out a first sign of Osteoblast cells differentiation with bone nodules formation, as confirmed by alkaline phosphatase (ALP) activity assay.


Gelatin/chemistry , Gold/chemistry , Metal Nanoparticles , Osteoblasts/cytology , Humans , Microscopy, Electron, Transmission , Osteoblasts/ultrastructure
20.
Colloids Surf B Biointerfaces ; 103: 475-81, 2013 Mar 01.
Article En | MEDLINE | ID: mdl-23261569

It is well known that standard citrate-reduced gold nanoparticles (AuNPs) are unstable at high ionic strength solution, which limits their applications in the biomedical field. In this work we present an environmentally friendly approach for the stabilization of citrate-reduced AuNPs in aqueous solution. Specifically, the stability of the AuNPs against salt-induced aggregation was greatly improved in the presence of gelatin biopolymer and stabilization of individual or small assemblies of nanoparticles can be controlled by the amount of gelatin. Furthermore, the gelatin-nanogold bioconjugates were demonstrated to be operational as highly sensitive surface-enhanced Raman scattering (SERS) active substrate for the detection of Rose Bengal fluorophore in solution at very low concentration. The results suggest that such bioconjugates can be successfully employed not only for detection of analytes, but more interestingly for building SERS-active tags in view of imaging purpose. The stabilization of bioconjugates was analyzed by localized surface plasmon resonance spectroscopy (LSPR), transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta-potential, and the chemical interaction of gelatin with AuNPs was inferred from Fourier transform infrared spectroscopy (FT-IR).


Gelatin/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Animals , Light , Metal Nanoparticles/ultrastructure , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Surface Plasmon Resonance , Sus scrofa
...