Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters











Publication year range
1.
Poult Sci ; 103(12): 104306, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39303353

ABSTRACT

This study investigated the production performance, carcass characteristics, and meat quality attributes of broilers fed with different doses of Monascus-fermented Moringa oleifera leaves. A total of 400 one-day-old unsexed Greenleg partridge broilers were randomly divided into 4 dietary which were fed a basal diet supplemented with 0, 5% Monascus-fermented Moringa oleifera leaves, 10% Monascus-fermented Moringa oleifera leaves, and 10% Moringa oleifera leaves, respectively. Each group had 5 replicates of twenty birds each. The whole trial lasted for 63 d. The results indicated that a high dose of Moringa oleifera leaves supplement in broiler diet reduced the production performance, carcass characteristics, and meat quality attributes (P < 0.05). While the addition of the same dose of Monascus-fermented Moringa oleifera leaves reversed this adverse effect, and the 5% Monascus-fermented Moringa oleifer leaves supplement was found to be more effective (P < 0.05). In addition, Monascus-fermented Moringa oleifera leaves improved the concentration of amino acids and polyunsaturated fatty acids in the meat, which could be beneficial for human health. We conclude that, a 5% Monascus-fermented Moringa oleifera leaves supplement in the diet is beneficial in terms of improved growth performance and the functional attributes of meat than sole Moringa oleifera leaves supplement.

2.
J Environ Manage ; 370: 122373, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243637

ABSTRACT

The management of rural waste, particularly agri-food waste, poses a major challenge to the ecosystem health. This study investigated the efficacy of black soldier fly larvae (Hermetia illucens L., BSFL) bioconversion for agri-food waste under independent treatment or co-treatment strategies using chicken manure and food waste as a model system. The results showed a synergistic effect of co-treating agri-food waste from different sources. The co-treatment strategy enhanced bioconversion efficiency, resulting in a 1.31-fold waste reduction rate and a 1.93-fold bioconversion rate. Additionally, larval growth performance and biomass quality of BSFL were improved, while lauric acid and oleic acid were enriched in the larval fat from the co-treatment strategy. 16S rRNA amplicon sequencing revealed that the co-treatment strategy reshaped both the residue and larval gut microbiota, with distinct enrichment of taxonomical biomarkers. Furthermore, under this strategy, metabolic functions of the residue microbiota were significantly activated, especially carbohydrate, amino acid, and lipid metabolism were enhanced by 16.3%, 23.5%, and 20.2%, respectively. The early colonization of lactic acid bacteria (Weisella and Aerococcus) in the residue, coupled with a symbiotic relationship between Enterococcus in the larval gut and the host, likely promoted organic matter degradation and larval growth performance. Scaling up the findings to a national level in China suggests that the co-treatment strategy can increase waste reduction quantity by 86,329 tonnes annually and produce more larval protein and fat with a market value of approximately US$237 million. Therefore, co-treatment of agri-food waste streams using BSFL presents a sustainable solution for rural waste management that potentially contributes to the achievement of SDG2 (Zero Hunger), SDG3 (Good Health and Well-Being), and SDG12 (Responsible Consumption and Production).

3.
Molecules ; 29(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39202950

ABSTRACT

Photoactive artificial nanocatalysts that mimic natural photoenergy systems can yield clean and renewable energy. However, their poor photoabsorption capability and disfavored photogenic electron-hole recombination hinder their production. Herein, we designed two nanocatalysts with various microstructures by combining the tailored self-assembly of the meso-tetra(p-hydroxyphenyl) porphine photosensitizer with the growth of titanium dioxide (TiO2). The porphyrin photoabsorption antenna efficiently extended the absorption range of TiO2 in the visible region, while anatase TiO2 promoted the efficient electron-hole separation of porphyrin. The photo-induced electrons were transferred to the surface of the Pt co-catalyst for the generation of hydrogen via water splitting, and the hole was utilized for the decomposition of methyl orange dye. The hybrid structure showed greatly increased photocatalytic performance compared to the core@shell structure due to massive active sites and increased photo-generated electron output. This controlled assembly regulation provides a new approach for the fabrication of advanced, structure-dependent photocatalysts.

4.
J Dairy Sci ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033914

ABSTRACT

Increasing studies have highlighted the significance of milk-derived extracellular vesicles (MEVs) in mother-newborn integration, as well as their application as novel drug delivery systems and diagnostic biomarkers. However, conventional ultracentrifugation (UC) often results in the co-precipitation of casein micelles in MEV pellets. In this study, we compared methods with different principles to screen the optimal pretreatment in caseins removal, and found that isoelectric precipitation by hydrochloric acid (HA) could most effectively remove caseins in porcine milk. We further characterized MEV populations isolated by UC and HA/UC from diverse aspects, including particle methodology via nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), RNA and protein contents, and purity analysis. Importantly, the proliferative and anti-inflammatory effects of MEVs were evaluated in vitro, showing the superiority of MEVs via HA/UC in functionality compared with UC. Our results suggest that HA pretreatment before ultracentrifugation could effectively remove caseins and other protein complexes, leading to MEVs via HA/UC with higher purity and more significant effects in vitro. This study provides valuable insights for the advancement of MEVs isolation techniques across different species and accurate function analysis of MEVs.

5.
Sci Rep ; 14(1): 16635, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39025906

ABSTRACT

The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/ß-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.


Subject(s)
Extracellular Vesicles , Liver , Mice, Knockout , MicroRNAs , Pituitary Gland , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Pituitary Gland/metabolism , Mice , Liver/metabolism , Cell Proliferation , Hepatocytes/metabolism , Wnt Signaling Pathway , Male , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Liver Regeneration/genetics , Carbon Tetrachloride/toxicity
6.
PLoS One ; 19(7): e0307538, 2024.
Article in English | MEDLINE | ID: mdl-39028745

ABSTRACT

This study explored the impact of landing height on the tibiofemoral joint's medial compartment force (MCF) during drop jumps to help athletes prevent knee injury. Experienced male participants (N = 16) performed drop jumps with landing heights from 0.15 m to 0.75 m. Kinematic/kinetic parameters were collected using a motion capture system and a three-dimensional force platform. The Med-Lat Knee model was used to calculate biomechanical indicators of the knee joint, and data were analyzed using one-way analysis of variance and one-dimensional statistical parametric mapping (SPM1d). Findings indicated that landing height significantly affected the anterior-posterior and vertical MCF, flexion-extension torque, internal-external rotation torque, and vertical ground reaction force (p<0.05)-all increasing with elevated landing height-and significantly impacted the generated force of the vastus medialis, vastus lateralis, and vastus intermedius (p<0.05). SPM1d analysis confirmed these results within specific time intervals. Thus, both the knee moment and the MCF exhibited similar coordinated changes during drop jumps, indicating that these may be adaptive movement strategy. The impact of varying drop jump heights on muscle groups around the knee joint varied suggests that different heights induce specific muscular responses and improve muscle coordination to prevent knee joint injuries.


Subject(s)
Knee Injuries , Tibiofemoral Joint , Torque , Humans , Tibiofemoral Joint/physiology , Tibia/physiology , Femur/physiology , Muscle, Skeletal , Biomechanical Phenomena , Knee Injuries/prevention & control , Adult
7.
Animals (Basel) ; 14(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39061518

ABSTRACT

Methane emissions from ruminants significantly contribute to greenhouse gases. This study explores the methane mitigation effect and mechanism of S. mcclurei through in vitro rumen fermentation, aiming to establish its potential as a feed additive. We investigated the effects of freeze-dried and dried S. mcclurei at supplementation levels of 2%, 5%, and 10% of dry matter on nutrient degradation, ruminal fermentation, methane inhibition, and microbial community structure in in vitro rumen fermentation. The freeze-dried S. mcclurei at 2% supplementation significantly reduced CH4 emissions by 18.85% and enhanced crude protein degradability. However, total VFA and acetate concentrations were lower in both treatments compared to the control. The microbial shifts included a decrease in Lachnospiraceae_NK3A20_group and Ruminococcus and an increase in Selenomonas, Succinivibrio, and Saccharofermentans, promoting propionate production. Additionally, a significant reduction in Methanomicrobium was observed, indicating direct methane mitigation. Freeze-dried S. mcclurei at a 2% supplementation level shows potential as an effective methane mitigation strategy with minimal impact on rumen fermentation, supported by detailed insights into microbial community changes.

8.
BMC Vet Res ; 20(1): 246, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849831

ABSTRACT

BACKGROUND: Reducing production costs while producing high-quality livestock and poultry products is an ongoing concern in the livestock industry. The addition of oil to livestock and poultry diets can enhance feed palatability and improve growth performance. Emulsifiers can be used as potential feed supplements to improve dietary energy utilization and maintain the efficient productivity of broilers. Therefore, further investigation is warranted to evaluate whether dietary emulsifier supplementation can improve the efficiency of fat utilization in the diet of yellow-feathered broilers. In the present study, the effects of adding emulsifier to the diet on lipid metabolism and the performance of yellow-feathered broilers were tested. A total of 240 yellow-feasted broilers (21-day-old) were randomly divided into 4 groups (6 replicates per group, 10 broilers per replicate, half male and half female within each replicate). The groups were as follows: the control group (fed with basal diet), the group fed with basal diet supplemented with 500 mg/kg emulsifier, the group fed with a reduced oil diet (reduced by 1%) supplemented with 500 mg/kg emulsifier, and the group fed with a reduced oil diet supplemented with 500 mg/kg emulsifier. The trial lasted for 42 days, during which the average daily feed intake, average daily gain, and feed-to-gain ratio were measured. Additionally, the expression levels of lipid metabolism-related genes in the liver, abdominal fat and each intestinal segment were assessed. RESULTS: The results showed that compared with the basal diet group, (1) The average daily gain of the basal diet + 500 mg/kg emulsifier group significantly increased (P < 0.05), and the half-even-chamber rate was significantly increased (P < 0.05); (2) The mRNA expression levels of Cd36, Dgat2, Apob, Fatp4, Fabp2, and Mttp in the small intestine were significantly increased (P < 0.05). (3) Furthermore, liver TG content significantly decreased (P < 0.05), and the mRNA expression level of Fasn in liver was significantly decreased (P < 0.05), while the expression of Apob, Lpl, Cpt-1, and Pparα significantly increased (P < 0.05). (4) The mRNA expression levels of Lpl and Fatp4 in adipose tissue were significantly increased (P < 0.05), while the expression of Atgl was significantly decreased (P < 0.05). (5) Compared with the reduced oil diet group, the half-evading rate and abdominal fat rate of broilers in the reduced oil diet + 500 mg/kg emulsifier group were significantly increased (P < 0.05), and the serum level of LDL-C increased significantly (P < 0.05)0.6) The mRNA expression levels of Cd36, Fatp4, Dgat2, Apob, and Mttp in the small intestine were significantly increased (P < 0.05). 7) The mRNA expression levels of Fasn and Acc were significantly decreased in the liver (P < 0.05), while the mRNA expression levels of Lpin1, Dgat2, Apob, Lpl, Cpt-1, and Pparα were significantly increased (P < 0.05). CONCLUSIONS: These results suggest that dietary emulsifier can enhance the fat utilization efficiency of broilers by increasing the small intestinal fatty acid uptake capacity, inhibiting hepatic fatty acid synthesis and promoting hepatic TG synthesis and transport capacity. This study provides valuable insights for the potential use of emulsifier supplementation to improve the performance of broiler chickens.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Emulsifying Agents , Lipid Metabolism , Animals , Chickens/metabolism , Lipid Metabolism/drug effects , Emulsifying Agents/pharmacology , Animal Feed/analysis , Male , Female , Diet/veterinary , Liver/metabolism , Liver/drug effects
9.
Animals (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891684

ABSTRACT

The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.

10.
Animals (Basel) ; 14(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38540018

ABSTRACT

This study aimed to assess the effects of different dietary vitamin D3 (VD3) levels on growth and carcass performance, tibia traits, meat quality, and intestinal morphology of yellow-feathered broilers. One-day-old broilers (n = 1440) were assigned into four treatment groups with six replicates per group, and each replicate contained 60 chicks. Dietary VD3 significantly improved the growth performance and carcass traits of broilers, and only low-dose VD3 supplementation decreased the abdominal fat percentage. High-dose VD3 supplementation improved intestinal morphology in the finisher stage, while the b* value of breast muscle meat color decreased markedly under VD3 supplementation (p < 0.05). Serum Ca and P levels and the tibia composition correlated positively with dietary VD3 supplementation at the early growth stage. The weight, length, and ash contents of the tibia increased linearly with increasing dietary VD3, with maximum values achieved in the high-dose group at all three stages. Intestinal 16S rRNA sequencing and liver transcriptome analysis showed that dietary VD3 might represent an effective treatment in poultry production by regulating lipid and immune-related metabolism in the gut-liver axis, which promotes the metabolism through the absorption of calcium and phosphorus in the intestine and improves their protective humoral immunity and reduces infection mortality. Dietary VD3 positively affected the growth-immunity and bone development of broilers during the early stage, suggesting strategies to optimize poultry feeding.

11.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542448

ABSTRACT

The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.


Subject(s)
Extracellular Vesicles , Brain-Gut Axis , Central Nervous System , Environment , Food
12.
Chem Commun (Camb) ; 60(33): 4423-4426, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38523593

ABSTRACT

A pair of isomeric Py-BT-COFs with the same composition, but slightly different atomic arrangements, were designed and synthesized. The minute structural variations of the Py-BT-COF isomers generated significantly different redox and photophysical properties and correspondingly led to different photocatalytic manifestations in H2 evolution and rhodamine B degradation.

13.
Microbiome ; 12(1): 33, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374121

ABSTRACT

BACKGROUND: Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS: We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS: The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.


Subject(s)
Lipid Metabolism , Muscle, Skeletal , Animals , China , Lipid Metabolism/genetics , Lipids , Muscle, Skeletal/metabolism , Obesity/metabolism , Swine
14.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307433

ABSTRACT

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , MicroRNAs , Humans , Emulsions , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammation/drug therapy , Inflammation/genetics
15.
Animals (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275780

ABSTRACT

Anemia and weaning stress are important factors affecting piglet growth performance. Spinach extract and licorice extract have been used to improve anemia and antioxidant capacity, respectively. However, whether they have synergistic effects has not been reported. To evaluate the effects of mixed spinach extract and licorice extract on growth performance, serum biochemistry, antioxidant capacity, and gut microbiota in weaned piglets, a total of 160 weaned piglets were randomly allotted to four treatments with four replications of 10 piglets each. The four treatments were as follows: control (CON) group (basal diet), spinach extract (SE) group (basal diet + 1.5 kg/t spinach extract), licorice extract (LE) group (basal diet + 400 g/t licorice extract), and spinach extract and licorice extract (MIX) group (basal diet + 1.5 kg/t spinach extract + 400 g/t licorice extract). The results showed that, compared with the CON group, diets supplemented with spinach extract and licorice extract significantly increased the average daily gain (p < 0.05), while considerably reducing the feed-to-gain ratio (p < 0.05). Moreover, the MIX group exhibited a significant up-regulation of serum total protein, globulin, albumin, glucose, and triglyceride levels in comparison to the CON group (p < 0.05). Meanwhile, both the anemia and antioxidant capacity of piglets were effectively improved. Notably, the MIX group achieved even better results than the individual supplementation in terms of enhancing growth performance, which could potentially be attributed to the increased abundance of the Rikenellaceae_RC9_gut_group. These results demonstrated that the supplementation of diets with spinach extract and licorice extract improves the absorption of nutrients from the diet and antioxidant capacity in weaned piglets.

16.
ACS Nano ; 18(4): 3161-3172, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227816

ABSTRACT

Designing and constructing supramolecular photosensitizer nanosystems with highly efficient photodynamic therapy (PDT) is vital in the nanomedical field. Despite recent advances in forming well-defined superstructures, the relationship between molecular arrangement in nanostructures and photodynamic properties has rarely been involved, which is crucial for developing stable photosensitizers for highly efficient PDT. In this work, through a microemulsion-assisted self-assembly approach, indium porphyrin (InTPP) was used to fabricate a series of morphology-controlled self-assemblies, including nanorods, nanospheres, nanoplates, and nanoparticles. They possessed structure-dependent 1O2 generation efficiency. Compared with the other three nanostructures, InTPP nanorods featuring strong π-π stacking, J-aggregation, and high crystallinity proved to be much more efficient at singlet oxygen (1O2) production. Also, theoretical modeling and photophysical experiments verified that the intermolecular π-π stacking in the nanorods could cause a decreased singlet-triplet energy gap (ΔEST) compared with the monomer. This played a key role in enhancing intersystem crossing and facilitating 1O2 generation. Both in vitro and in vivo experiments demonstrated that the InTPP nanorods could trigger cell apoptosis and tumor ablation upon laser irradiation (635 nm, 0.1 W/cm2) and exhibited negligible dark toxicity and high phototoxicity. Thus, the supramolecular self-assembly strategy provides an avenue for designing high-performance photosensitizer nanosystems for photodynamic therapy and beyond.


Subject(s)
Nanostructures , Photochemotherapy , Porphyrins , Photosensitizing Agents/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Indium , Nanostructures/chemistry , Singlet Oxygen/chemistry
17.
BMC Vet Res ; 20(1): 13, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184589

ABSTRACT

Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.


Subject(s)
Panax , Animals , Chickens , Body Weight , Cecum , Diarrhea/veterinary
18.
Int J Biol Macromol ; 257(Pt 1): 128609, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056741

ABSTRACT

Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.


Subject(s)
Muscle, Skeletal , Proto-Oncogene Proteins c-akt , Humans , Swine , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/metabolism , Signal Transduction , Cell Differentiation/genetics , Muscle Development/genetics
19.
AMB Express ; 13(1): 106, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787860

ABSTRACT

Herbal tea residue (HTR) is generally considered to be a reusable resource which has still retains considerable proportion of nutrients and active substances. This study aimed to investigate the effects of substitution of whole corn silage with fermented herbal tea residue (FHTR) on meat quality, serum indices, rumen fermentation, and microbes in Chuanzhong black goats. Twenty-two female Chuanzhong black goats (4 months old) with similar weight (9.55 ± 0.95 kg) were selected and randomly divided into two groups. FHTR was used to replace 0% (CON group) and 30% (FHTR group) of whole corn silage in the diets and fed as a total mixed ration (TMR) for Chuanzhong black goats. The adaptation feeding period was 7 days, and the experimental period was 35 days. Results illustrated that the FHTR group had higher value of a* and concentrations of DM and CP and lower rate of water loss (P < 0.05) than the CON group. For the serum indices, goats fed with 30% FHTR had higher (P < 0.05) concentration of CR on day 35. For rumen fermentation, the pH and ratio of acetic acid/propionic acid (AA/PA) in the FHTR group were significantly lower than those in the CON group (P < 0.05). In addition, we studied the goats's rumen microbial community composition and found that the dominant phyla were Firmicutes, Bacteroidetes,and Tenericutes; and the dominant genera were Quinella, Candidatus_Saccharimonas, and Saccharofermentans. There was a significant difference in the beta diversity of the rumen microbiota between groups (P < 0.05). To sum up, the addition of FHTR can affect the meat quality, serum indices, improved rumen fermentation by adjusted the diversity and function of the rumen microbiota.

20.
BMC Vet Res ; 19(1): 174, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759242

ABSTRACT

BACKGROUND: The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn. RESULTS: The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples. CONCLUSIONS: Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.


Subject(s)
Gastrointestinal Microbiome , Animals , Swine , Animals, Newborn , Plant Breeding , Bacteria/genetics , Jejunum/microbiology , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL