Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 666: 57-65, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583210

ABSTRACT

Modification of oxygen evolution co-catalyst (OEC) on the surface of bismuth vanadate (BiVO4) can effectively improve the kinetics of water oxidation, but it is still limited by the small hole extraction driving force at the BiVO4/OEC interface. Modulating the BiVO4/OEC interface with a hole transfer layer (HTL) is expected to facilitate hole transport from BiVO4 to the OEC surface. Herein, a copper(I) thiocyanate (CuSCN) HTL is inserted between BiVO4 and NiFeOx OEC to create BiVO4/CuSCN/NiFeOx photoanode, resulting in a significant enhancement of photoelectrochemical (PEC) water splitting performance. From electrochemical analyses and density functional theory (DFT) simulations, the markedly enhanced PEC performance is attributed to the insertion of CuSCN as an HTL, which promotes the extraction of holes from BiVO4 surface and boosts the water oxidation kinetics. The optimal photoanode achieves a photocurrent density of 5.6 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (vs. RHE) and an impressive charge separation efficiency of 96.2 %. This work offers valuable insights into the development of advanced photoanodes for solar energy conversion and emphasizes the importance of selecting an appropriate HTL to mitigate recombination at the BiVO4/OEC interface.

2.
J Clin Neurosci ; 121: 11-17, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308978

ABSTRACT

BACKGROUND: Nervus intermedius neuralgia (NIN) is characterized by paroxysmal episodes of sharp, lancinating pain in the deep ear. Unfortunately, only a few studies exist in the literature on this pain syndrome, its pathology and postoperative outcomes. METHOD: We conducted a retrospective review of four cases diagnosed with NIN who underwent a neurosurgical intervention at our center from January 2015 to January 2023. Detailed information on their MRI examinations, intraoperative findings and other clinical presentations were obtained, and the glossopharyngeal and vagus nerves were isolated for immunohistochemistry examination. RESULTS: A total of 4 NIN patients who underwent a microsurgical intervention at our institution were included in this report. The NI was sectioned in all patients and 3 of them underwent a microvascular decompression. Of these 4 patients, 1 had a concomitant trigeminal neuralgia (TN), and 1 a concomitant glossopharyngeal neuralgia (GPN). Three patients underwent treatment for TN and 2 for GPN. Follow-up assessments ranged from 8 to 99 months. Three patients reported complete pain relief immediately after the surgery until last follow-up, while in the remaining patient the preoperative pain gradually resolved over the 3 month period. Immunohistochemistry revealed that a greater amount of CD4+ and CD8+ T cells had infiltrated the glossopharyngeal versus vagus nerve. CONCLUSIONS: NIN is an extremely rare condition showing a high degree of overlap with TN/GPN. An in depth neurosurgical intervention is effective to completely relieve NIN pain, without any serious complications. It appears that T cells may play regulatory role in the pathophysiology of CN neuralgia.


Subject(s)
Glossopharyngeal Nerve Diseases , Microvascular Decompression Surgery , Neuralgia , Trigeminal Neuralgia , Humans , Facial Nerve , CD8-Positive T-Lymphocytes , Neuralgia/etiology , Neuralgia/surgery , Trigeminal Neuralgia/diagnostic imaging , Trigeminal Neuralgia/etiology , Trigeminal Neuralgia/surgery , Glossopharyngeal Nerve Diseases/surgery , Treatment Outcome
3.
Heliyon ; 10(4): e25866, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384585

ABSTRACT

Background: The immune microenvironment and hypoxia play crucial roles in the pathophysiology of ischemic stroke (IS). Hence, in this study, we aimed to identify hypoxia- and immune-related biomarkers in IS. Methods: The IS microarray dataset GSE16561 was examined to determine differentially expressed genes (DEGs) utilizing bioinformatics-based analysis. The intersection of hypoxia-related genes and DEGs was conducted to identify differentially expressed hypoxia-related genes (DEHRGs). Then, using weighted correlation network analysis (WGCNA), all of the genes in GSE16561 dataset were examined to create a co-expression network, and module-clinical trait correlations were examined for the purpose of examining the genes linked to immune cells. The immune-related DEHRGs were submitted to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed by Cytoscape plugin MCODE, in order to extract hub genes. The miRNet was used to predict hub gene-related transcription factors (TFs) and miRNAs. Finally, a diagnostic model was developed by least absolute shrinkage and selection operator (LASSO) logistic regression. Results: Between the control and IS samples, 4171 DEGs were found. Thereafter, the intersection of hypoxia-related genes and DEGs was conducted to obtain 45 DEHRGs. Ten significantly differentially infiltrated immune cells were found-namely, CD56dim natural killer cells, activated CD8 T cells, activated dendritic cells, activated B cells, central memory CD8 T cells, effector memory CD8 T cells, natural killer cells, gamma delta T cells, plasmacytoid dendritic cells, and neutrophils-between IS and control samples. Subsequently, we identified 27 immune-related DEHRGs through the intersection of DEHRGs and genes in important modules of WGCNA. The immune-related DEHRGs were primarily enriched in response to hypoxia, cellular polysaccharide metabolic process, response to decreased oxygen levels, polysaccharide metabolic process, lipid and atherosclerosis, and HIF-1 signaling pathway H. Using MCODE, FOS, DDIT3, DUSP1, and NFIL3 were found to be hub genes. In the validation cohort and training set, the AUC values of the diagnostic model were 0.9188034 and 0.9395085, respectively. Conclusion: In brief, we identified and validated four hub genes-FOS, DDIT3, DUSP1, and NFIL3-which might be involved in the pathological development of IS, potentially providing novel perspectives for the diagnosis and treatment of IS.

SELECTION OF CITATIONS
SEARCH DETAIL