Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(7): 4093-4113, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38829538

ABSTRACT

Titanium (Ti) and its alloys are widely used biomaterials in bone repair. Although these biomaterials possess stable properties and good biocompatibility, the high elastic modulus and low surface activity of Ti implants have often been associated with infection, inflammation, and poor osteogenesis. Therefore, there is an urgent need to modify the surface of Ti implants, where changes in surface morphology or coatings loading can confer specific functions to help them adapt to the osseointegration formation phase and resist bacterial infection. This can further ensure a healthy microenvironment for bone regeneration as well as the promotion of immunomodulation, angiogenesis, and osteogenesis. Therefore, in this review, we evaluated various functional Ti implants after surface modification, both in terms of static modifications and dynamic response strategies, mainly focusing on the synergistic effects of antimicrobial activities and functionalized osteogenic. Finally, the current challenges and future perspectives are summarized to provide innovative and effective solutions for osseointegration and bone defect repair.


Subject(s)
Anti-Bacterial Agents , Osseointegration , Osteogenesis , Prostheses and Implants , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Osseointegration/drug effects , Humans , Osteogenesis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Bone Regeneration/drug effects
2.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849820

ABSTRACT

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Subject(s)
Bivalvia , Bone Regeneration , Durapatite , Gold , Indoles , Macrophages , Osteogenesis , Bone Regeneration/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Animals , Mice , Gold/chemistry , Gold/pharmacology , Bivalvia/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Indoles/chemistry , Indoles/pharmacology , Osteogenesis/drug effects , Reactive Oxygen Species/metabolism , Polymers/chemistry , Polymers/pharmacology , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Osteoblasts/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Cytokines/metabolism
3.
RSC Adv ; 14(24): 16639-16648, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784417

ABSTRACT

Designing active and stable electrocatalysts with economic efficiency for oxygen evolution reaction (OER) is essential for developing water splitting process at an industrial scale. Herein, we rationally designed a tungsten doped iron cobalt phosphide incorporated with carbon (Wx-FeCoP2/C), prepared by a mechanochemical approach. X-ray photoelectron spectroscopy (XPS) revealed that the doping of W led to an increasing of Co3+/Co2+ and Fe3+/Fe2+ molar ratios, which contributed to the enhanced OER performance. As a result, a current density of 10 mA cm-2 was achieved in 1 M KOH at an overpotential of 264 mV on the optimized W0.1-FeCoP2/C. Moreover, at high current density of 100 mA cm-2, the overpotential value was 310 mV, and the corresponding Tafel slope was measured to be 48.5 mV dec-1, placing it among the best phosphide-based catalysts for OER. This work is expected to enlighten the design strategy of highly efficient phosphide-based OER catalysts.

4.
ACS Omega ; 9(16): 17784-17807, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680314

ABSTRACT

Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.

5.
J Nanobiotechnology ; 22(1): 210, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671474

ABSTRACT

Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.


Subject(s)
Bacterial Infections , Carbon , Neoplasms , Photochemotherapy , Photosensitizing Agents , Quantum Dots , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Humans , Neoplasms/drug therapy , Carbon/chemistry , Carbon/therapeutic use , Carbon/pharmacology , Bacterial Infections/drug therapy , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Animals , Reactive Oxygen Species/metabolism
6.
J Biomed Mater Res B Appl Biomater ; 112(3): e35400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456343

ABSTRACT

Lithium disilicate (Li2 Si2 O5 ) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li2 Si2 O5 whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li2 Si2 O5 glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 µg/cm2 , complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.


Subject(s)
Ceramics , Containment of Biohazards , Animals , Mice , Rabbits , Materials Testing , Solubility , Surface Properties , Ceramics/chemistry , Dental Porcelain , Lithium
7.
Mater Today Bio ; 26: 101032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38533376

ABSTRACT

The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.

8.
J Biomed Mater Res B Appl Biomater ; 112(1): e35334, 2024 01.
Article in English | MEDLINE | ID: mdl-37776023

ABSTRACT

The use of glass-ceramics in the medical field has grown significantly since the 1980s. With excellent aesthetic properties, semi-translucency, outstanding mechanical properties, corrosion resistance, wear resistance and great biocompatibility and workability glass-ceramics is one of the most commonly used materials in restorative dentistry and is widely used in veneers, inlays, onlays, all-ceramic crowns, and implant abutments. This review provides an overview of the research progress of glass-ceramics in restorative dentistry, focusing on the classification, performance requirements, toughening mechanisms and their association with clinical performance, as well as the manufacturing and fabrication of glass-ceramics in restorative dentistry. Finally, the developments and prospects of glass-ceramics in restorative dentistry are summarized and discussed.


Subject(s)
Ceramics , Dentistry , Dental Porcelain , Materials Testing
9.
Food Chem X ; 20: 100886, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144837

ABSTRACT

Loquat fruits are among the most popular Chinese fruits because of their unique taste and aroma. The quality profiles of these fruits during 18 days of shelf-life at 20 °C were elucidated by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), E-nose, and E-tongue. During shelf-life period, the properties and variations of 43 (20 aldehydes, 7 esters, 6 ketones, 1 alcohol, and 1 furan) volatile flavored compounds were determined by GC-IMS, which showed that the contents of methyl 3-methyl butanoate, ethyl acetate, and dimethyl ketone gradually decrease with prolonged shelf-life time, while (E)-2-heptenal, heptanal, (E)-2-pentenal, 1-penten-3-one 3-pentanone and 2-pentylfuran increase. The PCA based on the signal intensity of GC-IMS and E-nose, revealed that loquat fruits are well distinguished at different shelf-life times. The taste profile alternates as the storage time increases, along with higher pH, and lower amounts of total soluble solids, vitamin C, and total phenolics. The visual plots of GC-IMS, E-nose, and E-tongue had good consistency, and they characterized the aroma characteristics of loquat fruits well during different shelf-life periods. The findings of this research provide a useful understanding of the flavors of loquat fruits during their prolonged shelf-life, and a potential research basis for advancements in the loquat industry.

10.
Int J Nanomedicine ; 18: 6813-6828, 2023.
Article in English | MEDLINE | ID: mdl-38026533

ABSTRACT

Background: Carbon dots (CDs), a novel nanomaterial, have gained significant attention over the past decade due to their remarkable fluorescence properties, low toxicity, and biocompatibility. These characteristics make them promising in various applications, especially in biomedicine. However, most CDs are currently synthesized using chemical materials, and their biocompatibility falls short of natural compounds. Research on extracting CDs from natural sources is limited, and their potential in biomedicine remains largely unexplored. Methods: We extracted CDs from resveratrol, a natural plant compound, and enhanced their water solubility using citric acid. Characterization of resveratrol-based carbon dots (RES-CDs) was carried out using various techniques, including UV-Vis, SEM, TEM, FTIR, XRD, and fluorescence spectroscopy. Extensive biocompatibility tests, wound healing assays, cell migration studies, and angiogenesis experiments were conducted using human umbilical vein endothelial cells (HUVEC). In addition, we investigated the biocompatibility and wound healing potential of RES-CDs in an in vivo rat model of inflammation. Results: RES-CDs exhibited stable yellow-green fluorescence under 365-nanometer ultraviolet light and demonstrated excellent biocompatibility. In wound healing experiments, RES-CDs outperformed resveratrol in terms of cell scratch healing, migration, and tube formation. In a rat skin defect model, RES-CDs promoted wound healing and stimulated the formation of blood vessels and tissue regeneration near the wound site, as evidenced by increased CD31 and VEGF expression. Conclusion: Resveratrol-derived CDs with enhanced water solubility show superior performance in tissue healing compared to resveratrol. This discovery opens new possibilities for the clinical application of resveratrol-based carbon dots.


Subject(s)
Carbon , Quantum Dots , Rats , Humans , Animals , Resveratrol/pharmacology , Carbon/chemistry , Wound Healing , Human Umbilical Vein Endothelial Cells , Water , Quantum Dots/chemistry
11.
Tissue Eng Regen Med ; 20(7): 1017-1039, 2023 12.
Article in English | MEDLINE | ID: mdl-37688748

ABSTRACT

BACKGROUND: Cartilage, bone, and teeth, as the three primary hard tissues in the human body, have a significant application value in maintaining physical and mental health. Since the development of bacterial cellulose-based composite materials with excellent biomechanical strength and good biocompatibility, bacterial cellulose-based composites have been widely studied in hard tissue regenerative medicine. This paper provides an overview of the advantages of bacterial cellulose-based for hard tissue regeneration and reviews the recent progress in the preparation and research of bacterial cellulose-based composites in maxillofacial cartilage, dentistry, and bone. METHOD: A systematic review was performed by searching the PubMed and Web of Science databases using selected keywords and Medical Subject Headings search terms. RESULTS: Ideal hard tissue regenerative medicine materials should be biocompatible, biodegradable, non-toxic, easy to use, and not burdensome to the human body; In addition, they should have good plasticity and processability and can be prepared into materials of different shapes; In addition, it should have good biological activity, promoting cell proliferation and regeneration. Bacterial cellulose materials have corresponding advantages and disadvantages due to their inherent properties. However, after being combined with other materials (natural/ synthetic materials) to form composite materials, they basically meet the requirements of hard tissue regenerative medicine materials. We believe that it is worth being widely promoted in clinical applications in the future. CONCLUSION: Bacterial cellulose-based composites hold great promise for clinical applications in hard tissue engineering. However, there are still several challenges that need to be addressed. Further research is needed to incorporate multiple disciplines and advance biological tissue engineering techniques. By enhancing the adhesion of materials to osteoblasts, providing cell stress stimulation through materials, and introducing controlled release systems into matrix materials, the practical application of bacterial cellulose-based composites in clinical settings will become more feasible in the near future.


Subject(s)
Biocompatible Materials , Regenerative Medicine , Humans , Regenerative Medicine/methods , Cellulose , Tissue Engineering/methods , Cartilage
12.
Front Bioeng Biotechnol ; 11: 1226065, 2023.
Article in English | MEDLINE | ID: mdl-37485317

ABSTRACT

In recent years, mechanoluminescent (ML) materials have shown great potential in stress sensing, mechanical energy collection and conversion, so they have attracted wide attention in the field of stomatology. In the early stage of this study, BaSi2O2N2:Eu2+ ML phosphors were synthesized by two-step high temperature solid state method, and then mixed with Polydimethylsiloxane (PDMS) in different proportions to obtain BaSi2O2N2:Eu2+/PDMS ML composites with different mass fractions (10%,20%,30%,40%,50%). Then its biosafety was evaluated by Cell Counting Kit-8 (CCK-8), Calcein-AM/PI fluorescence staining, hemolysis, oral mucosal irritation, acute and subacute systemic toxicity tests. The experimental results show that the biosafety of BaSi2O2N2:Eu2+/PDMS ML composite elastomers with different mass fraction is in line with the existing standards, and other related properties can be further studied.

13.
Biomed Mater ; 18(4)2023 06 26.
Article in English | MEDLINE | ID: mdl-37321231

ABSTRACT

Carbon dots (CDs) are novel zero-dimensional spherical nanoparticles with water solubility, biocompatibility and photoluminescence properties. As the variety of raw materials for CDs synthesis becomes more and more abundant, people tend to choose precursors from nature. Many recent studies have shown that CDs can inherit properties similar to their carbon sources. Chinese herbal medicine has a variety of therapeutic effects to many diseases. In recent years, many literatures have chosen herbal medicine as raw materials, however, how the properties of raw materials affect CDs has not been systematically summarized. The intrinsic bioactivity and potential pharmacological effects of CDs have not received sufficient attention and have become a 'blind spot' for research. In this paper, the main synthesis methods were introduced and the effects of carbon sources from different herbal medicine on the properties of CDs and related applications were reviewed. In addition, we briefly review some of the biosafety assessments of CDs, and make recommendations for biomedical applications. CDs that inherit the therapeutic properties of herbs can enable diagnosis and treatment of clinical diseases, bioimaging, and biosensing in the future.


Subject(s)
Nanoparticles , Plants, Medicinal , Quantum Dots , Humans , Carbon , Containment of Biohazards , Plant Extracts
14.
Nanoscale ; 15(7): 3106-3119, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723029

ABSTRACT

Bone tissue engineering (BTE), based on the perfect combination of seed cells, scaffold materials and growth factors, has shown unparalleled potential in the treatment of bone defects and related diseases. As the site of cell attachment, proliferation and differentiation, scaffolds composed of biomaterials play a crucial role in BTE. Over the past years, carbon dots (CDs), a new type of carbon-based nanomaterial, have attracted extensive research attention due to their good biocompatibility, unique optical properties, and abundant functional groups. This paper reviews recent research progress in the use of CDs in the field of BTE. Firstly, different preparation methods of CDs are summarized. Then, the properties and categories of CDs applied in BTE are described in detail. Subsequently, the applications of CDs in BTE, including osteogenesis, fluorescence tracing, phototherapy and antibacterial activity, are presented. Finally, the challenges and future perspectives of CDs in BTE are briefly discussed to give a comprehensive picture of CDs. This review provides a theoretical basis and advanced design strategies for the application of CDs in BTE.


Subject(s)
Quantum Dots , Tissue Engineering , Carbon , Biocompatible Materials/pharmacology , Bone and Bones , Tissue Scaffolds
15.
Bioengineered ; 12(1): 640-647, 2021 12.
Article in English | MEDLINE | ID: mdl-33587004

ABSTRACT

This study investigated anti-polyphenol oxidase activity and mechanism of purified total flavonoids (PTF) from young loquat fruits. PTF remarkably inhibited the activity of polyphenol oxidase (PPO) with an IC50 value of 21.03 ± 2.37 µg/mL. Based on enzyme kinetics, PTF was found to be a potent, mixed-type, and reversible inhibitor of PPO. The fluorescence intensity of PPO was quenched by PTF through forming a PTF-PPO complex in a static procedure. Therefore, this study authenticated PTF as an efficient PPO inhibitor, which would contribute to their utilization in food industry.


Subject(s)
Catechol Oxidase , Enzyme Inhibitors , Eriobotrya/chemistry , Flavonoids , Fruit/chemistry , Catechol Oxidase/antagonists & inhibitors , Catechol Oxidase/metabolism , Enzyme Inhibitors/analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Kinetics
16.
Chemosphere ; 184: 753-761, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28641227

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) accumulated in agricultural soils are likely to threaten human health and ecosystem though the food chain, therefore, it is worth to pay more attention to soil contamination by PAHs. In this study, the presence, distribution and risk assessment of 16 priority PAHs in rice-wheat continuous cropping soils close to industrial parks of Suzhou were firstly investigated. The concentrations of the total PAHs ranged from 125.99 ng/g to 796.65 ng/g with an average of 352.94 ng/g. Phenanthrene (PHE), fluoranthene (FLT), benzo [a] anthracene (BaA) and pyrene (PYR) were the major PAHs in those soil samples. The highest level of PAHs was detected in the soils around Chemical plant and Steelworks, followed by Printed wire board, Electroplate Factory and Paper mill. The composition of PAHs in the soils around Chemical plant was dominated by 3-ring PAHs, however, the predominant compounds were 4, 5-ring PAHs in the soils around other four factories. Meanwhile, the concentration of the total PAHs in the soils close to the factories showed a higher level of PAHs in November (during rice harvest) than that in June (during wheat harvest). Different with other rings of PAHs, 3-ring PAHs in the soils around Chemical plant and Steelworks had a higher concentration in June. The results of principal component analysis and isomeric ratio analysis suggested that PAHs in the studied areas mainly originated from biomass, coal and petroleum combustion. The risk assessment indicated that higher carcinogenic risk was found in those sites closer to the industrial park.


Subject(s)
Agriculture , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Anthracenes , Carcinogens/analysis , China , Coal/analysis , Fluorenes , Humans , Industry , Oryza , Petroleum/analysis , Phenanthrenes , Pyrenes , Risk Assessment , Soil/chemistry , Triticum
17.
J Food Prot ; 78(11): 1954-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26555517

ABSTRACT

The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.


Subject(s)
Food Handling/methods , Salmonella/growth & development , Zingiber officinale/microbiology , Colony Count, Microbial , Desiccation , Food Handling/instrumentation , Food Storage , Zingiber officinale/chemistry , Hot Temperature , Salmonella/isolation & purification , Spices/analysis , Spices/microbiology , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...