Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
Reprod Toxicol ; 128: 108634, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851359

ABSTRACT

Vinorelbine is a commonly used drug to treat various malignancies, such as breast cancer, non-small cell lung cancer, and metastatic pleural mesothelioma. Its side effects include severe neutropenia, local phlebitis, gastrointestinal reactions, and neurotoxicity. In view of the scarcity of research on vinorelbine's reproductive toxicity, this study evaluated the impact of vinorelbine ditartrate, a commonly used form of vinorelbine, on oocyte maturation in vitro. Our investigation revealed that vinorelbine ditartrate had no effect on oocyte meiotic resumption. However, it did reduce the rate of first polar body extrusion, suggesting that it could significantly impede the meiotic maturation of oocytes. Vinorelbine ditartrate exposure was found to disturb the regular spindle assembly and chromosome alignment, leading to the continuous activation of the spindle assembly checkpoint (SAC) and a delayed activation of the anaphase-promoting complex/cyclosome (APC/C), ultimately causing aneuploidy in oocytes. Consequently, the administration of vinorelbine is likely to result in oocyte aneuploidy, which can be helpful in providing a drug reference and fertility guidance in a clinical context.

2.
J Genet Genomics ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38657948

ABSTRACT

Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.

3.
J Med Virol ; 96(4): e29590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619024

ABSTRACT

Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Alzheimer Disease/genetics , Brain , Cluster Analysis , COVID-19/genetics , Endocannabinoids , Microfilament Proteins , Myelin and Lymphocyte-Associated Proteolipid Proteins
4.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546043

ABSTRACT

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Subject(s)
M Phase Cell Cycle Checkpoints , Meiosis , Animals , Female , Mice , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Oocytes/metabolism , Ubiquitins/metabolism
5.
Adv Sci (Weinh) ; 11(13): e2306986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240347

ABSTRACT

Previously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility. RNF20-depleted oocytes exhibit severely abnormal spindle and chromosome misalignment caused by defective bipolar organization. Notably, it is found that the function of RNF20 in spindle assembly is not dependent on its E3 ligase activity. Instead, RNF20 regulates spindle assembly by recruiting tropomyosin3 (TPM3) to both centromeres and spindle poles with its coiled-coil motif. The RNF20-TPM3 interaction is essential for acentrosomal meiotic spindle assembly. Together, the studies uncover a novel function for RNF20 in mediating TPM3 recruitment to both centromeres and spindle poles during oocyte spindle assembly.


Subject(s)
Meiosis , Spindle Apparatus , Male , Female , Humans , Spindle Apparatus/metabolism , Oocytes/metabolism , Spindle Poles/metabolism , Centromere
6.
Ecotoxicol Environ Saf ; 269: 115811, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38086265

ABSTRACT

Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.


Subject(s)
Gastrointestinal Microbiome , Vinyl Compounds , Pregnancy , Female , Humans , Mice , Animals , Maternal Exposure/adverse effects , Cyclohexenes/toxicity , Bile Acids and Salts , Carnitine
7.
Cell Mol Life Sci ; 80(12): 372, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001238

ABSTRACT

Postovulatory aging leads to the decline in oocyte quality and subsequent impairment of embryonic development, thereby reducing the success rate of assisted reproductive technology (ART). Potential preventative strategies preventing oocytes from aging and the associated underlying mechanisms warrant investigation. In this study, we identified that cordycepin, a natural nucleoside analogue, promoted the quality of oocytes aging in vitro, as indicated by reduced oocyte fragmentation, improved spindle/chromosomes morphology and mitochondrial function, as well as increased embryonic developmental competence. Proteomic and RNA sequencing analyses revealed that cordycepin inhibited the degradation of several crucial maternal proteins and mRNAs caused by aging. Strikingly, cordycepin was found to suppress the elevation of DCP1A protein by inhibiting polyadenylation during postovulatory aging, consequently impeding the decapping of maternal mRNAs. In humans, the increased degradation of DCP1A and total mRNA during postovulatory aging was also inhibited by cordycepin. Collectively, our findings demonstrate that cordycepin prevents postovulatory aging of mammalian oocytes by inhibition of maternal mRNAs degradation via suppressing polyadenylation of DCP1A mRNA, thereby promoting oocyte developmental competence.


Subject(s)
Polyadenylation , RNA, Messenger, Stored , Humans , Animals , RNA, Messenger, Stored/metabolism , Proteomics , Oocytes/metabolism , Aging , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/metabolism , Endoribonucleases/metabolism , Trans-Activators/metabolism
8.
BMC Biol ; 21(1): 231, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37867192

ABSTRACT

BACKGROUND: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited. RESULTS: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf2 by Stra8-Cre caused complete infertility and defective spermatogenesis. Further analyses revealed that deletion of Srsf2 disrupted differentiation and meiosis initiation of spermatogonia. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF2 regulatory networks play critical roles in several major events including reproductive development, spermatogenesis, meiotic cell cycle, synapse organization, DNA recombination, chromosome segregation, and male sex differentiation. Furthermore, SRSF2 affected expression and alternative splicing of Stra8, Stag3 and Atr encoding critical factors for spermatogenesis in a direct manner. CONCLUSIONS: Taken together, our results demonstrate that SRSF2 has important functions in spermatogenesis and male fertility by regulating alternative splicing.


Subject(s)
RNA Splicing , Spermatogenesis , Male , Humans , Spermatogenesis/genetics , RNA-Binding Proteins/genetics , Alternative Splicing , Meiosis/genetics , RNA, Messenger
9.
Int J Biol Sci ; 19(15): 4883-4897, 2023.
Article in English | MEDLINE | ID: mdl-37781512

ABSTRACT

Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf1 led to complete infertility by affecting spermatogenesis. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF1 affected the AS of Stra8 in a direct manner and Dazl, Dmc1, Mre11a, Syce2 and Rif1 in an indirect manner. Our findings demonstrate that SRSF1 has crucial functions in spermatogenesis and male fertility by regulating alternative splicing.


Subject(s)
Alternative Splicing , Spermatogenesis , Male , Alternative Splicing/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Spermatogenesis/genetics , Testis/metabolism , Animals
10.
BMC Med ; 21(1): 388, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37814306

ABSTRACT

BACKGROUND: Dipeptidyl peptidase-4 inhibitors (DPP-4i) have become firmly established in treatment algorithms and national guidelines for improving glycemic control in type 2 diabetes mellitus (T2DM).To report the findings from a multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial, which was designed to assess the efficacy and safety of a novel DPP-4 inhibitor fotagliptin in treatment-naive patients with T2DM. METHODS: Patients with T2DM were randomized to receive fotagliptin (n = 230), alogliptin (n = 113) or placebo (n = 115) at a 2:1:1 ratio for 24 weeks of double-blind treatment period, followed by an open-label treatment period, making up a total of 52 weeks. The primary efficacy endpoint was to determine the superiority of fotagliptin over placebo in the change of HbA1c from baseline to Week 24. All serious or significant adverse events were recorded. RESULTS: After 24 weeks, mean decreases in HbA1c from baseline were -0.70% for fotagliptin, -0.72% for alogliptin and -0.26% for placebo. Estimated mean treatment differences in HbA1c were -0.44% (95% confidence interval [CI]: -0.62% to -0.27%) for fotagliptin versus placebo, and -0.46% (95% CI: -0.67% to -0.26%) for alogliptin versus placebo, and 0.02% (95%CI: -0.16% to 0.19%; upper limit of 95%CI < margin of 0.4%) for fotagliptin versus alogliptin. So fotagliptin was non-inferior to alogliptin. Compared with subjects with placebo (15.5%), significantly more patients with fotagliptin (37.0%) and alogliptin (35.5%) achieved HbA1c < 7.0% after 24 weeks of treatment. During the whole 52 weeks of treatment, the overall incidence of hypoglycemia was low for both of the fotagliptin and alogliptin groups (1.0% each). No drug-related serious adverse events were observed in any treatment group. CONCLUSIONS: In summary, the study demonstrated improvement in glycemic control and a favorable safety profile for fotagliptin in treatment-naive patients with T2DM. TRIAL REGISTRATION: ClinicalTrail.gov NCT05782192.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , Blood Glucose , Hypoglycemic Agents/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Double-Blind Method , Treatment Outcome
11.
Clin Transl Med ; 13(10): e1236, 2023 10.
Article in English | MEDLINE | ID: mdl-37846137

ABSTRACT

OBJECTIVE: To reveal whether gut microbiota and their metabolites are correlated with oocyte quality decline caused by circadian rhythm disruption, and to search possible approaches for improving oocyte quality. DESIGN: A mouse model exposed to continuous light was established. The oocyte quality, embryonic development, microbial metabolites and gut microbiota were analyzed. Intragastric administration of microbial metabolites was conducted to confirm the relationship between gut microbiota and oocyte quality and embryonic development. RESULTS: Firstly, we found that oocyte quality and embryonic development decreased in mice exposed to continuous light. Through metabolomics profiling and 16S rDNA-seq, we found that the intestinal absorption capacity of vitamin D was decreased due to significant decrease of bile acids such as lithocholic acid (LCA), which was significantly associated with increased abundance of Turicibacter. Subsequently, the concentrations of anti-Mullerian hormone (AMH) hormone in blood and melatonin in follicular fluid were reduced, which is the main reason for the decline of oocyte quality and early embryonic development, and this was rescued by injection of vitamin D3 (VD3). Secondly, melatonin rescued oocyte quality and embryonic development by increasing the concentration of lithocholic acid and reducing the concentration of oxidative stress metabolites in the intestine. Thirdly, we found six metabolites that could rescue oocyte quality and early embryonic development, among which LCA of 30 mg/kg and NorDCA of 15 mg/kg had the best rescue effect. CONCLUSION: These findings confirm the link between ovarian function and gut microbiota regulation by microbial metabolites and have potential value for improving ovary function.


Subject(s)
Gastrointestinal Microbiome , Melatonin , Pregnancy , Female , Mice , Animals , Vitamin D , Bile Acids and Salts , Melatonin/metabolism , Oocytes/metabolism , Embryonic Development , Lithocholic Acid/pharmacology , Lithocholic Acid/metabolism
12.
iScience ; 26(10): 107828, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37736051

ABSTRACT

The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.

13.
J Cell Physiol ; 238(11): 2535-2545, 2023 11.
Article in English | MEDLINE | ID: mdl-37642322

ABSTRACT

During the oocyte growth, maturation and zygote development, chromatin structure keeps changing to regulate different nuclear activities. Here, we reported the role of SMC2, a core component of condensin complex, in oocyte and embryo development. Oocyte-specific conditional knockout of SMC2 caused female infertility. In the absence of SMC2, oocyte meiotic maturation and ovulation occurred normally, but chromosome condensation showed defects and DNA damages were accumulated in oocytes. The pronuclei were abnormally organized and micronuclei were frequently observed in fertilized eggs, their activity was impaired, and embryo development was arrested at the one-cell stage, suggesting that maternal SMC2 is essential for embryonic development.


Subject(s)
Cell Nucleus , Chromosomes , Animals , Female , Mice , Pregnancy , Cell Cycle , Cell Nucleus/physiology , Embryonic Development/genetics , Meiosis/genetics , Oocytes/physiology , Zygote
14.
Cell Mol Life Sci ; 80(9): 247, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37578641

ABSTRACT

Controlled mRNA storage and stability is essential for oocyte meiosis and early embryonic development. However, how to regulate mRNA storage and stability in mammalian oogenesis remains elusive. Here we showed that LSM14B, a component of membraneless compartments including P-body-like granules and mitochondria-associated ribonucleoprotein domain (MARDO) in germ cell, is indispensable for female fertility. To reveal loss of LSM14B disrupted primordial follicle assembly and caused mRNA reduction in non-growing oocytes, which was concomitant with the impaired assembly of P-body-like granules. 10× Genomics single-cell RNA-sequencing and immunostaining were performed. Meanwhile, we conducted RNA-seq analysis of GV-stage oocytes and found that Lsm14b deficiency not only impaired the maternal mRNA accumulation but also disrupted the translation in fully grown oocytes, which was closely associated with dissolution of MARDO components. Moreover, Lsm14b-deficient oocytes reassembled a pronucleus containing decondensed chromatin after extrusion of the first polar body, through compromising the activation of maturation promoting factor, while the defects were restored via WEE1/2 inhibitor. Together, our findings reveal that Lsm14b plays a pivotal role in mammalian oogenesis by specifically controlling of oocyte mRNA storage and stability.


Subject(s)
Oocytes , Oogenesis , Animals , Female , RNA, Messenger/genetics , Oogenesis/genetics , Ovarian Follicle , Meiosis/genetics , Fertility/genetics , Mammals
15.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37485540

ABSTRACT

Accurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I. However, it was surprising that the knockout mice were completely fertile and the resulting oocytes were euploid. In the absence of Mad2, other SAC proteins, including BubR1, Bub3 and Mad1, were normally recruited to the kinetochores, which likely explains the balanced chromosome separation. Further studies showed that the chromosome separation in Mad2-null oocytes was particularly sensitive to environmental changes and, when matured in vitro, showed chromosome misalignment, lagging chromosomes, and aneuploidy with premature separation of sister chromatids, which was exacerbated at a lower temperature. We reveal for the first time that Mad2 is dispensable for proper chromosome segregation but acts to mitigate environmental stress in meiotic oocytes.


Subject(s)
Cell Cycle Proteins , Spindle Apparatus , Animals , Mice , Cell Cycle Proteins/metabolism , Spindle Apparatus/metabolism , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Chromosome Segregation/genetics , Oocytes/metabolism , Kinetochores/metabolism , Meiosis/genetics
16.
Carbohydr Polym ; 318: 121121, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479454

ABSTRACT

High-molecular-weight chitosan has limited applications due to unsatisfactory solubility and hydrophilicity. Discharge plasma coupled with peracetic acid (PAA) oxidation ("plasma+PAA") realized fast depolymerization of high-molecular-weight chitosan in this study. The molecular weight of chitosan rapidly declined to 81.1 kDa from initial 682.5 kDa within 60 s of "plasma+PAA" treatment, and its reaction rate constant was 12-fold higher than single plasma oxidation. Compared with 1O2, ∙CH3, CH3O2·, and O2∙-, CH3CO2∙ and CH3CO3∙ played decisive roles in the chitosan depolymerization in the plasma+PAA system through mechanisms of radical adduct formation. The attacks of CH3CO2∙ and CH3CO3∙ destroyed the ß-(1,4) glycosidic bonds and hydrogen bonds of chitosan, leading to generation of low-molecular-weight chitosan; the main chain structure of chitosan was not changed during the depolymerization process. Furthermore, the generated low-molecular-weight chitosan exhibited greater antioxidant activities than original chitosan. Overall, this study revealed the radical adduct formation mechanisms of CH3CO2∙ and CH3CO3∙ for chitosan decomposition, providing an alternative for fast depolymerization of high-molecular-weight chitosan.

17.
Mol Hum Reprod ; 29(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-37471586

ABSTRACT

Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.


Subject(s)
Blastocyst , MicroRNAs , RNA, Circular , Animals , Humans , Mice , Blastocyst/metabolism , Embryo, Mammalian , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Mammals/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Swine , Jumonji Domain-Containing Histone Demethylases/genetics
18.
Nutrients ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513621

ABSTRACT

Alzheimer's disease (AD) is a globally prevalent neurodegenerative disorder, the underlying causes and mechanisms of which remain elusive. The emerging interest in the potential connection between gut microbes and AD prompted our study to investigate this field through bibliometric analysis. To examine research trends over the past decade, we collected relevant data using search terms associated with gut microbiota and AD from the Web of Science Core Collection. Our analysis involved various tools, including R (version 4.2.2), VOSviewer (version 1.6.18), CiteSpace software (version 6.2.R1), and an online bibliometric platform. Our findings identified a total of 1170 articles published between 2012 and 2022, indicating a consistent growth of research interest in this area. Notably, China significantly contributed with 40.7% (374) of the publications, signifying its prominent role in this field. Among the journals, the Journal of Alzheimer's Disease published the highest number of articles (57; 4.9%). In terms of author influence, Wang Y, with an H-index of 13, emerged as the most influential author. Additionally, Shanghai Jiaotong University was the most productive institution, accounting for 66 articles (5.6%). Through keyword analysis, we grouped high-frequency keywords into six clusters: gut microbiota, AD, neuroinflammation, gut-brain axis, oxidative stress, and chain fatty acids. Chain fatty acids, oxidative stress, and the gut-brain axis emerged as dominant research topics in the past five years. Recent studies have specifically focused on "nlrp3 inflammasome" and "clearance" (2020-2022), indicating shifting research interests within this field. This bibliometric analysis aims to provide insights into the evolving landscape of research on the gut microbiota and AD. Our results identify key research trends and themes while highlighting potential research gaps. The findings offer valuable perspectives for future investigations, advancing our understanding of AD and exploring potential therapeutic strategies.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Humans , China/epidemiology , Bibliometrics , Fatty Acids
19.
Adv Sci (Weinh) ; 10(27): e2301940, 2023 09.
Article in English | MEDLINE | ID: mdl-37493331

ABSTRACT

Sperm-induced Ca2+ rise is critical for driving oocyte activation and subsequent embryonic development, but little is known about how lasting Ca2+ oscillations are regulated. Here it is shown that NLRP14, a maternal effect factor, is essential for keeping Ca2+ oscillations and early embryonic development. Few embryos lacking maternal NLRP14 can develop beyond the 2-cell stage. The impaired developmental potential of Nlrp14-deficient oocytes is mainly caused by disrupted cytoplasmic function and calcium homeostasis due to altered mitochondrial distribution, morphology, and activity since the calcium oscillations and development of Nlrp14-deficient oocytes can be rescued by substitution of whole cytoplasm by spindle transfer. Proteomics analysis reveal that cytoplasmic UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is significantly decreased in Nlrp14-deficient oocytes, and Uhrf1-deficient oocytes also show disrupted calcium homeostasis and developmental arrest. Strikingly, it is found that the mitochondrial Na+ /Ca2+ exchanger (NCLX) encoded by Slc8b1 is significantly decreased in the Nlrp14mNull oocyte. Mechanistically, NLRP14 interacts with the NCLX intrinsically disordered regions (IDRs) domain and maintain its stability by regulating the K27-linked ubiquitination. Thus, the study reveals NLRP14 as a crucial player in calcium homeostasis that is important for early embryonic development.


Subject(s)
Calcium , Nucleoside-Triphosphatase , Semen , Humans , Male , Calcium/metabolism , Homeostasis/physiology , Oocytes/metabolism , Semen/metabolism , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Ubiquitination , Animals , Mice , Nucleoside-Triphosphatase/metabolism
20.
Aging (Albany NY) ; 15(13): 6292-6301, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37413994

ABSTRACT

Heavy drinking in women is known to adversely affect pregnancy and fertility. However, pregnancy is a complex process, and the adverse effects of ethanol on pregnancy does not mean that ethanol will have adverse effects on all stages from gamete to fetal formation. Similarly, the adverse effects of ethanol before and after adolescence cannot be generalized. To focus on the effects of prepubertal ethanol on female reproductive ability, we established a mouse model of prepubertal ethanol exposure by changing drinking water to 20% v/v ethanol. Some routine detections were performed on the model mice, and details such as mating, fertility, reproductive organ and fetal weights were recorded day by day after discontinuation of ethanol exposure. Prepubertal ethanol exposure resulted in decreased ovarian weight and significantly reduced oocyte maturation and ovulation after sexual maturation, however, normal morphology oocytes with discharged polar body showed normal chromosomes and spindle morphology. Strikingly, oocytes with normal morphology from ethanol exposed mice showed reduced fertilization rate, but once fertilized they had the ability to develop to blastocysts. RNA-seq analysis showed that the gene expression of the ethanol exposed oocytes with normal morphology had been altered. These results show the adverse effects of prepubertal alcohol exposure on adult female reproductive health.


Subject(s)
Ethanol , Reproduction , Pregnancy , Female , Mice , Animals , Ethanol/toxicity , Oocytes , Fertility , Germ Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...