Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
2.
Front Microbiol ; 15: 1367184, 2024.
Article in English | MEDLINE | ID: mdl-38827150

ABSTRACT

Diversifying cultivation management, including different crop rotation patterns and soil amendment, are effective strategies for alleviating the obstacles of continuous cropping in peanut (Arachis hypogaea L.). However, the peanut yield enhancement effect and temporal changes in soil chemical properties and microbial activities in response to differential multi-year crop rotation patterns and soil amendment remain unclear. In the present study, a multi-year localization experiment with the consecutive application of five different cultivation managements (including rotation with different crops under the presence or absence of external quicklime as soil amendment) was conducted to investigate the dynamic changes in peanut nutrient uptake and yield status, soil chemical property, microbial community composition and function. Peanut continuous cropping led to a reduction in peanut yield, while green manure-peanut rotation and wheat-maize-peanut rotation increased peanut yield by 40.59 and 81.95%, respectively. A combination of quicklime application increased yield by a further 28.76 and 24.34%. Alterations in cultivation management also strongly affected the soil pH, nutrient content, and composition and function of the microbial community. The fungal community was more sensitive than the bacterial community to cultivation pattern shift. Variation in bacterial community was mainly attributed to soil organic carbon, pH and calcium content, while variation in fungal community was more closely related to soil phosphorus content. Wheat-maize-peanut rotation combined with quicklime application effectively modifies the soil acidification environment, improves the soil fertility, reshapes the composition of beneficial and harmful microbial communities, thereby improving soil health, promoting peanut development, and alleviating peanut continuous cropping obstacles. We concluded that wheat-maize-peanut rotation in combination with quicklime application was the effective practice to improve the soil fertility and change the composition of potentially beneficial and pathogenic microbial communities in the soil, which is strongly beneficial for building a healthy soil micro-ecology, promoting the growth and development of peanut, and reducing the harm caused by continuous cropping obstacles to peanut.

3.
Food Funct ; 15(7): 3552-3565, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38465899

ABSTRACT

Osteoarthritis is the most prevalent degenerative joint disease reported worldwide. Conventional treatment strategies mainly focus on medication and involve surgical joint replacement. The use of these therapies is limited by gastrointestinal complications and the lifespan of joint prostheses. Hence, safe and efficacious drugs are urgently needed to impede the osteoarthritis progression. Urolithin B, a metabolite of ellagic acid in the gut, exhibits anti-inflammatory and antioxidant properties; however, its role in osteoarthritis remains unclear. In this study, we demonstrated that urolithin B efficiently inhibits the inflammatory factor-induced production of matrix metalloproteinases (MMP3 and MMP13) in vitro and upregulates the expression of type II collagen and aggrecan. Urolithin B alleviates cartilage erosion and osteophyte formation induced by anterior cruciate ligament transections. Moreover, urolithin B inhibits the activation of the NF-κB pathway by reducing the phosphorylation of Iκb-α and the nuclear translocation of P65. In summary, urolithin B significantly inhibits inflammation and alleviates osteoarthritis. Hence, urolithin B can be considered a potential agent suitable for the effective treatment of osteoarthritis in the future.


Subject(s)
Coumarins , Osteoarthritis , Signal Transduction , Humans , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Chondrocytes , Inflammation/drug therapy , Inflammation/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Cartilage/metabolism , Interleukin-1beta/metabolism
4.
Cell Death Discov ; 10(1): 80, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360705

ABSTRACT

Bone and mineral metabolism homeostasis accounts for the maintenance of normal skeletal remodeling. However, with aging and changes in hormone levels, over-activated osteoclasts disrupt homeostasis, induce osteoporosis, and even cause osteoporotic fractures, leading to an enormous economic burden. Despite the rapid development of pharmacological therapy for osteoporosis, safer and more effective treatments remain to be explored. Here, we demonstrate that Mulberroside A (Mul-A), a natural component extracted from mulberry bark and branches, effectively suppresses osteoclastogenesis in vitro and counteracts bone loss caused by ovariectomy (OVX). The mechanism underlying this effect involves the repression of autophagic flux during osteoclastogenesis by Mul-A, which can be attributed to the restrained expression of microphthalmia-related transcription factor (Mitf) and its nuclear translocation. Importantly, Mitf overexpression partially reverses the inhibitory effects of Mul-A on autophagy and osteoclastogenesis. Moreover, applying two autophagy agonizts, rapamycin and Torin 1, attenuates the osteoclastogenic regulatory role of Mul-A. Collectively, our study demonstrates that Mul-A damages osteoclast differentiation and ameliorates osteoporosis caused by estrogen deficiency by modulation of Mitf-associated autophagy, indicating its therapeutic potential against osteoporosis.

6.
Zhongguo Gu Shang ; 36(12): 1153-8, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38130224

ABSTRACT

OBJECTIVE: To explore clinical effect of arthroscopy-assisted rotator cuff tendon transfer in treating irreparable rotator cuff tears (IRCT). METHODS: From May 2015 to May 2018, 23 patients with unrepairable rotator cuff tears were treated with arthroscopy-assisted rotator cuff tendon transfer, and 21 patients were followed up finally, including 8 males and 13 females, aged from 48 to 82 years old with an average of(64.3±9.1) years old;the courses of disease ranged from 6 to 36 months with an average of (14.0±6.4) months. American Rotator and Elbow Surgeons Score(ASES) and Constant-Murley score were used to evaluate clinical efficacy before surgery and at the latest follow-up. RESULTS: All 21 patients were followed up for 36 to 54 months with an average of (39.4±4.4) months. Axillary incision of 1 patient was redness, swelling and exudation after surgery, which healed after 3 weeks of dressing change, and exudate culture was negative. At the latest follow-up, MRI showed partial tearing of the metastatic tendon in 2 patients, but pain and movement of the affected shoulder were still better than before surgery. ASES increased from preoperative (41.0±9.6) scores to the latest follow-up (75.6±14.0) scores, and had statistical difference (t=10.50, P<0.01). Constant-Murley score increased from (49.8±7.1) scores before operation to (67.5±11.6) scores at the latest follow-up (t=11.27, P<0.01). CONCLUSION: Arthroscopic assisted latissimus dorsalis tendon transposition restores physiological and anatomical structure of glenohumeral joint by reconstructing balance of horizontal and vertical couples of shoulder joint, thus achieving the stability of the shoulder joint, relieving shoulder pain and improving shoulder joint function.


Subject(s)
Rotator Cuff Injuries , Shoulder Joint , Superficial Back Muscles , Male , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Rotator Cuff Injuries/surgery , Rotator Cuff , Treatment Outcome , Shoulder Joint/surgery , Tendon Transfer , Arthroscopy , Range of Motion, Articular/physiology
7.
Plant Physiol ; 192(1): 307-325, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36755501

ABSTRACT

Y900 is one of the top hybrid rice (Oryza sativa) varieties, with its yield exceeding 15 t·hm-2. To dissect the mechanism of heterosis, we sequenced the male parent line R900 and female parent line Y58S using long-read and Hi-C technology. High-quality reference genomes of 396.41 Mb and 398.24 Mb were obtained for R900 and Y58S, respectively. Genome-wide variations between the parents were systematically identified, including 1,367,758 single-nucleotide polymorphisms, 299,149 insertions/deletions, and 4,757 structural variations. The level of variation between Y58S and R900 was the lowest among the comparisons of Y58S with other rice genomes. More than 75% of genes exhibited variation between the two parents. Compared with other two-line hybrids sharing the same female parent, the portion of Geng/japonica (GJ)-type genetic components from different male parents increased with yield increasing in their corresponding hybrids. Transcriptome analysis revealed that the partial dominance effect was the main genetic effect that constituted the heterosis of Y900. In the hybrid, both alleles from the two parents were expressed, and their expression patterns were dynamically regulated in different tissues. The cis-regulation was dominant for young panicle tissues, while trans-regulation was more common in leaf tissues. Overdominance was surprisingly prevalent in stems and more likely regulated by the trans-regulation mechanism. Additionally, R900 contained many excellent GJ haplotypes, such as NARROW LEAF1, Oryza sativa SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13, and Grain number, plant height, and heading date8, making it a good complement to Y58S. The fine-tuned mechanism of heterosis involves genome-wide variation, GJ introgression, key functional genes, and dynamic gene/allele expression and regulation pattern changes in different tissues and growth stages.


Subject(s)
Hybrid Vigor , Oryza , Hybrid Vigor/genetics , Oryza/genetics , Gene Expression Profiling , Hybridization, Genetic
8.
Sci Adv ; 9(6): eade5584, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36753544

ABSTRACT

Osteoarthritis (OA) is a degenerative disease with a series of metabolic changes accompanied by many altered enzymes. Here, we report that the down-regulated dimethylarginine dimethylaminohydrolase-1 (DDAH1) is accompanied by increased asymmetric dimethylarginine (ADMA) in degenerated chondrocytes and in OA samples. Global or chondrocyte-conditional knockout of ADMA hydrolase DDAH1 accelerated OA development in mice. ADMA induces the degeneration and senescence of chondrocytes and reduces the extracellular matrix deposition, thereby accelerating OA progression. ADMA simultaneously binds to SOX9 and its deubiquitinating enzyme USP7, blocking the deubiquitination effects of USP7 on SOX9 and therefore leads to SOX9 degradation. The ADMA level in synovial fluids of patients with OA is increased and has predictive value for OA diagnosis with good sensitivity and specificity. Therefore, activating DDAH1 to reduce ADMA level might be a potential therapeutic strategy for OA treatment.


Subject(s)
Arginine , Mice , Animals , Ubiquitin-Specific Peptidase 7 , Arginine/metabolism
9.
Biochem Biophys Res Commun ; 622: 129-135, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35849954

ABSTRACT

Osteoarthritis (OA) is now a common degenerative joint related disease. However, the clinical efficacy of drugs associated with cartilage regeneration remains limited. In our study, we firstly explored the role of ERK1 in the progression of OA. We clarified that ERK1-deficient mice were susceptible to age-related OA. The higher OARSI scores and more severe cartilage degeneration was observed in the ERK1-deficient mice. ERK1 deficiency decreased the nuclear transportation of Nrf2 in the chondrocytes and accelerated chondrocyte aging in vitro. Moreover, chondrocytes with ERK1 deficiency elevated the nuclear expression of BACH1, resulting in lowered expression of antioxidant enzymes in ERK1-deficient chondrocytes. The Nrf2 activator dimethyl fumarate (DMF) was used. Our experiments demonstrated the protective function of DMF against OA in ERK1 knockout mice. Above all, we confirmed the effects of ERK1 on the progression of OA and clarified the mechanisms underlying these effects. DMF might has significant use in the development of novel drugs for the therapy of OA in the future.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Mice, Knockout , Mitogen-Activated Protein Kinase 3 , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Osteoarthritis/metabolism , Signal Transduction
10.
Int J Biol Sci ; 18(8): 3122-3136, 2022.
Article in English | MEDLINE | ID: mdl-35637948

ABSTRACT

Mutations and altered expression of deubiquitinating enzymes (DUBs) profoundly influence tumor progression. Ubiquitin-specific protease 1 (USP1) is a well-characterized human DUB reportedly overexpressed in and associated with maintaining the mesenchymal stem cell status of osteosarcoma (OS); however, the potential mechanisms of USP1 in OS remain poorly understood. In this study, we identified that USP1 directly interacts with Transcriptional Co-Activator With PDZ-Binding Motif (TAZ) in OS cell lines, and with mechanistic analysis indicating that the anti-OS effects of USP1 inhibition could be partially attributed to TAZ instability, with its reduced nuclear accumulation responsible for a subsequent decrease in the expression of downstream genes associated with the Hippo signaling pathway. Moreover, pharmacological inhibition USP1 by ML323 presented the similar effects on Hippo signaling pathway and suppressed OS growth and metastasis both in vitro and in vivo. Taken together, our results revealed a novel molecular mechanism underlying the function of USP1 in OS and a potential role of ML323 as a therapeutic strategy for the clinical treatment of OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Ubiquitin-Specific Proteases , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Humans , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Ubiquitin-Specific Proteases/genetics
11.
Cell Death Dis ; 12(9): 825, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475393

ABSTRACT

Osteoporosis-related fractures, such as femoral neck and vertebral fractures, are common in aged people, resulting in increased disability rate and health-care costs. Thus, it is of great importance to clarify the mechanism of osteoclast-related osteoporosis and find effective ways to avoid its complication. In this study, gene expression profile analysis and real-time polymerase chain reaction revealed that DUSP6 expression was suppressed in human and mice osteoporosis cases. In vitro experiments confirmed that DUSP6 overexpression prevented osteoclastogenesis, whereas inhibition of DUSP6 by small interference RNA or with a chemical inhibitor, (E/Z)-BCI, had the opposite effect. (E/Z)-BCl significantly accelerated the bone loss process in vivo by enhancing osteoclastogenesis. Bioinformatics analyses and in vitro experiments indicated that miR-181a was an upstream regulator of DUSP6. Moreover, miR-181a positively induced the differentiation and negatively regulated the apoptosis of osteoclasts via DUSP6. Furthermore, downstream signals by ERK2 and SMAD2 were also found to be involved in this process. Evaluation of ERK2-deficiency bone marrow-derived macrophages confirmed the role of ERK2 signaling in the DUSP6-mediated osteoclastogenesis. Additionally, immunoprecipitation assays confirmed that DUSP6 directly modified the phosphorylation status of SMAD2 and the subsequent nuclear transportation of NFATC1 to regulate osteoclast differentiation. Altogether, this study demonstrated for the first time the role of miRNA-181a/DUSP6 in the progression of osteoporosis via the ERK2 and SMAD2 signaling pathway. Hence, DUSP6 may represent a novel target for the treatment of osteoclast-related diseases in the future.


Subject(s)
Cell Differentiation , Dual Specificity Phosphatase 6/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Osteoclasts/pathology , Osteoporosis/pathology , Signal Transduction , Smad2 Protein/metabolism , Animals , Bone Resorption/complications , Bone Resorption/pathology , Bone and Bones/drug effects , Bone and Bones/pathology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/genetics , Dual Specificity Phosphatase 6/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Osteoporosis/complications , Osteoporosis/enzymology , Osteoporosis/genetics , RANK Ligand/antagonists & inhibitors , RANK Ligand/pharmacology , Signal Transduction/drug effects , Tartrate-Resistant Acid Phosphatase/metabolism
12.
Front Plant Sci ; 12: 647574, 2021.
Article in English | MEDLINE | ID: mdl-33986763

ABSTRACT

Remobilization of pre-anthesis NSCs (non-structural carbohydrates) is significant for effective grain filling in rice (Oryza sativa L.). However, abundant starch particles as an important component of NSCs are still present in the leaf sheath and stem at the late stage of grain filling. There are no studies on how bioengineering techniques can be used to improve the efficiency of NSC remobilization. In this study, RAmy1A was expressed under the senescence-specific promoter of SAG12, which was designed to degrade starch in the leaf sheath and stem during grain filling. RAmy1A mRNA successfully accumulated in the leaf, stem, and sheath of transgenic plants after anthesis. At the same time, the starch and total soluble sugar content in the leaf, stem, and leaf sheath were obviously decreased during the grain-filling period. The photosynthetic rate of transgenic lines was higher than that of the wild types by an average of 4.0 and 9.9%, at 5 and 10 days after flowering, respectively. In addition, the grain-filling rate of transgenic lines was faster than that of the wild types by an average of 26.09%. These results indicate an enhanced transport efficiency of NSCs from source tissues in transgenic rice. Transgenic rice also displayed accelerated leaf senescence, which was hypothesized to contribute to decreased grain weight.

13.
Antioxid Redox Signal ; 35(1): 1-20, 2021 07.
Article in English | MEDLINE | ID: mdl-33588625

ABSTRACT

Aims: Emerging evidence suggests that the pathogenesis of osteoporosis, characterized by impaired osteogenesis, is shifting from estrogen centric to oxidative stress. Our previous studies have shown that the zinc-finger transcription factor krüppel-like factor 5 (KLF5) plays a key role in the degeneration of nucleus pulposus and cartilage. However, its role in osteoporosis remains unknown. We aimed to investigate the effect and mechanism of KLF5 on osteogenesis under oxidative stress. Results: First, KLF5 was required for osteogenesis and stimulated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). KLF5 was hypermethylated and downregulated in ovariectomy-induced osteoporosis mice and in BMSCs treated with H2O2. Interestingly, DNA methyltransferases 3B (DNMT3B) upregulation mediated the hypermethylation of KLF5 induced by oxidative stress, thereby impairing osteogenic differentiation. The inhibition of KLF5 hypermethylation using DNMT3B siRNA or 5-AZA-2-deoxycytidine (5-AZA) protected osteogenic differentiation of BMSCs from oxidative stress. Regarding the downstream mechanism, KLF5 induced ß-catenin expression. More importantly, KLF5 promoted the nuclear translocation of ß-catenin, which was mediated by the armadillo repeat region of ß-catenin. Consistently, oxidative stress-induced KLF5 hypermethylation inhibited osteogenic differentiation by reducing the expression and nuclear translocation of ß-catenin. Innovation: We describe the novel effect and mechanism of KLF5 on osteogenesis under oxidative stress, which is linked to osteoporosis for the first time. Conclusion: Our results suggested that oxidative stress-induced hypermethylation of KLF5 mediated by DNMT3B impairs osteogenesis by diminishing the interaction with ß-catenin, which is likely to contribute to osteoporosis. Targeting the hypermethylation of KLF5 might be a new strategy for the treatment of osteoporosis. Antioxid. Redox Signal. 35, 1-20.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Kruppel-Like Transcription Factors/genetics , Osteogenesis/genetics , Osteoporosis/genetics , Oxidative Stress/genetics , beta Catenin/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Female , Humans , Kruppel-Like Transcription Factors/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Osteoporosis/metabolism , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Ovariectomy , Promoter Regions, Genetic/genetics , DNA Methyltransferase 3B
14.
Nat Commun ; 11(1): 4778, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32963241

ABSTRACT

Obtaining genetic variation information from indica rice hybrid parents and identification of loci associated with heterosis are important for hybrid rice breeding. Here, we resequence 1,143 indica accessions mostly selected from the parents of superior hybrid rice cultivars of China, identify genetic variations, and perform kinship analysis. We find different hybrid rice crossing patterns between 3- and 2-line superior hybrid lines. By calculating frequencies of parental variation differences (FPVDs), a more direct approach for studying rice heterosis, we identify loci that are linked to heterosis, which include 98 in superior 3-line hybrids and 36 in superior 2-line hybrids. As a proof of concept, we find two accessions harboring a deletion in OsNramp5, a previously reported gene functioning in cadmium absorption, which can be used to mitigate rice grain cadmium levels through hybrid breeding. Resource of indica rice genetic variation reported in this study will be valuable to geneticists and breeders.


Subject(s)
Genetic Variation , Hybrid Vigor/genetics , Oryza/genetics , Breeding , Cation Transport Proteins/genetics , China , Crosses, Genetic , Gene Deletion , Genes, Plant , Hybridization, Genetic , Oryza/classification , Phylogeny , Plant Proteins/genetics , Polymorphism, Single Nucleotide
16.
Front Plant Sci ; 11: 1189, 2020.
Article in English | MEDLINE | ID: mdl-32849737

ABSTRACT

The gene tms5, which controls thermo-sensitive genic male sterility (TGMS), has been widely used in two-line hybrid rice breeding in China. The tms5 lines have two sources, namely, AnnongS-1 (AnS) and Zhu1S (ZhS) and, interestingly, are commonly subject to an alteration at cds.71. However, whether cds.71 acts as a mutation hotspot is unknown. Herein, another tms5 mutant named T98S (induced from T98B by irradiation) was used to explore this. First, the gene of tms(t) responsible for T98S was fine-mapped on chromosome 2 based on an F2 group of T98S/R893. In T98S, the candidate gene TMS5 (LOC_Os02g12290.1) mutated at cds.71 with a transversion from cytosine (C) to adenine (A), as also observed in AnS and ZhS. Moreover, the entire coding sequence of TMS5 from T98B converted T98S from sterile to fertile by Agrobacterium tumefaciens-mediated transformation, confirming that T98S is controlled by tms5. Next, detection on nearly 40,000 single nucleotide polymorphisms (SNPs) on Rice 56K SNP Array revealed T98S was 99.99% similar to T98B but only 72.84% and 77.47% similar to AnS and ZhS, respectively, demonstrating that T98S originated from T98B rather than from existing tms5 lines. Furthermore, the cds.70 was found to exist as a T/G haplotype, and it was T rather than G that helped to induce a TGMS trait. The T frequency was 67.52% in indica rice but decreased to 1.75% in japonica rice in 2,644 cultivars tested, which partly explains why tms5 mutants were mostly found in indica lines. Our findings provide evidence that cds.71 may act as a mutation hotspot and clues for breeding TGMS lines in a more efficient way.

17.
J Cell Mol Med ; 24(10): 5652-5664, 2020 05.
Article in English | MEDLINE | ID: mdl-32285603

ABSTRACT

Osteosarcoma, the most common bone malignancy, has a high morbidity rate and poor prognosis. Krüppel-like factor 5 (KLF5) is a key transcriptional regulator of cellular proliferation whose overexpression is observed in osteosarcoma cell lines (U2OS, 143B, MG63 and SAOS2). ML264, a small-molecule inhibitor of KLF5, exerts antiproliferative effects in colorectal cancer; however, its function in osteosarcoma remains unknown. Here, we explored the possible antitumour effects of ML264 on 143B and U2OS cell lines and murine tumour xenograft model. ML264 suppressed proliferation and clonogenic ability of osteosarcoma cells in a dose-dependent manner. Moreover, ML264 induced G0/G1 cell cycle arrest, with no influence on apoptosis, and inhibited the migratory and invasive abilities of osteosarcoma cells, as demonstrated by wound-healing and Transwell assays. Exposure to ML264 reduced the mRNA and protein levels of molecules associated with epithelial-mesenchymal transition phenotype, including N-cadherin, vimentin, Snail, matrix metalloproteinase (MMP) 9 and MMP13. Inhibition of signal transducer and activator of transcription (STAT) 3 phosphorylation and Wnt signalling was also observed. In the murine model of osteosarcoma, tumour growth was efficiently suppressed following a 10-day treatment with ML264. Collectively, our findings demonstrate the potential value of ML264 as a novel anticancer drug for osteosarcoma.


Subject(s)
Acrylamides/pharmacology , Antineoplastic Agents/pharmacology , Cyclic S-Oxides/pharmacology , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Wnt Signaling Pathway/drug effects , Animals , Bone Neoplasms/metabolism , Cell Line, Tumor , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Mice , Osteosarcoma/metabolism , Phenotype , Xenograft Model Antitumor Assays
18.
Sci Rep ; 10(1): 3434, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32103092

ABSTRACT

Ligation-mediated PCR (LM-PCR) is a classical method for isolating flanking sequences; however, it has a common limitation of reduced success rate owing to the circularization or multimerization of target restriction fragments including the known sequence. To address this limitation, we developed a novel LM-PCR method, termed Cyclic Digestion and Ligation-Mediated PCR (CDL-PCR). The novelty of this approach involves the design of new adapters that cannot be digested after being ligated with the restriction fragment, and cyclic digestion and ligation may be manipulated to block the circularization or multimerization of the target restriction fragments. Moreover, to improve the generality and flexibility of CDL-PCR, an adapter precursor sequence was designed, which could be digested to prepare 12 different adapters at low cost. Using this method, the flanking sequences of T-DNA insertions were obtained from transgenic rice and Arabidopsis thaliana. The experimental results demonstrated that CDL-PCR is an efficient and flexible method for identifying the flanking sequences in transgenic rice and Arabidopsis thaliana.


Subject(s)
DNA, Bacterial/metabolism , Polymerase Chain Reaction/methods , Arabidopsis/genetics , DNA, Bacterial/genetics , Mutagenesis, Insertional , Oryza/genetics , Plants, Genetically Modified/genetics , Sequence Analysis, DNA
19.
Redox Biol ; 28: 101309, 2020 01.
Article in English | MEDLINE | ID: mdl-31487581

ABSTRACT

The dysregulation of ROS production and osteoclastogenesis is involved in the progress of osteoporosis. To identify novel and effective targets to treat this disease, it is important to explore the underlying mechanisms. In our study, we firstly tested the effect of the Nrf2 activator RTA-408, a novel synthetic triterpenoid under clinical investigation for many diseases, on osteoclastogenesis. We found that it could inhibit osteoclast differentiation and bone resorption in a time- and dose-dependent manner. Further, RTA-408 enhanced the expression and activity of Nrf2 and significantly suppressed RANKL-induced reactive oxygen species (ROS) production. Nrf2 regulates the STING expression and STING induces the production of IFN-ß. Here, we found that RTA-408 could suppress STING expression, but that it does not affect Ifnb1 expression. RANKL-induced degradation of IκBα and the nuclear translocation of P65 was suppressed by RTA-408. Although this compound was not found to influence STING-IFN-ß signaling, it suppressed the RANKL-induced K63-ubiquitination of STING via inhibiting the interaction between STING and the E3 ubiquitin ligase TRAF6. Further, adenovirus-mediated STING overexpression rescued the suppressive effect of RTA-408 on NF-κB signaling and osteoclastogenesis. In vivo experiments showed that this compound could effectively attenuate ovariectomy (OVX)-induced bone loss in C57BL/6 mice by inhibiting osteoclastogenesis. Collectively, we show that RTA-408 inhibits NF-κB signaling by suppressing the recruitment of TRAF6 to STING, in addition to attenuating osteoclastogenesis and OVX-induced bone loss in vivo, suggesting that it could be a promising candidate for treating osteoporosis in the future.


Subject(s)
Macrophages/cytology , Mesenchymal Stem Cells/cytology , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/administration & dosage , Osteoporosis/drug therapy , Signal Transduction/drug effects , Animals , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Macrophages/drug effects , Macrophages/metabolism , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Oleanolic Acid/pharmacology , Osteoporosis/etiology , Osteoporosis/metabolism , Ovariectomy/adverse effects , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism , Time Factors
20.
FASEB J ; 33(11): 12929-12940, 2019 11.
Article in English | MEDLINE | ID: mdl-31490085

ABSTRACT

The endogenous metabolite itaconate has emerged as a regulator of macrophage function that limits inflammation. However, its effect on cell differentiation and osteoclast-related diseases is unclear. Here, for the first time, we explored the effect of itaconate and its cell-permeable itaconate derivative, 4-octyl itaconate (OI) on osteoclast differentiation in vitro and in vivo. Firstly, we demonstrated that itaconate concentration was lower in estrogen-deficient mice. OI released itaconate and induced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) in bone marrow-derived macrophages during osteoclastogenesis. Furthermore, OI significantly suppressed the early, middle, and late stages of osteoclastogenesis induced by receptor activator of NF-κB ligand in vitro, as confirmed by tartrate-resistant acid phosphatase staining. Moreover, it significantly inhibited fibrous actin ring formation and bone resorption in vitro. Mechanistically, we observed that OI enhanced Nrf2 expression by suppressing its association with ubiquitin via inhibition of the E3 ubiquitin ligase (Hrd1). OI also inhibited LPS-induced the reactive oxygen species and inflammatory responses via Hrd1. An estrogen deficiency (via ovariectomy)-induced osteoporosis model was also established. Here, on micro-computed tomography and histologic analysis showed that OI effectively suppressed ovariectomy-induced bone loss. In summary, OI, an itaconate derivative, can inhibit osteoclastogenesis in vitro and in vivo, indicating that OI could be a potential drug to treat osteoclast-related diseases; our results also link itaconate to the development of osteoporosis.-Sun, X., Zhang, B., Pan, X., Huang, H., Xie, Z., Ma, Y., Hu, B., Wang, J., Chen, Z., Shi, P. Octyl itaconate inhibits osteoclastogenesis by suppressing Hrd1 and activating Nrf2 signaling.


Subject(s)
NF-E2-Related Factor 2/metabolism , Osteoclasts/drug effects , Osteogenesis/drug effects , Signal Transduction/drug effects , Succinates/pharmacology , Ubiquitin-Protein Ligases/metabolism , Animals , Estrogens/deficiency , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/metabolism , Osteoporosis/prevention & control , Ovariectomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...