Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 71(10): 3014-3023, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38913534

ABSTRACT

Brain-Computer Interface (BCI) has gained remarkable prominence in biomedical community. While BCI holds vast potential across diverse domains, the implantation of neural electrodes poses multifaceted challenges to fully explore the power of BCI. Conventional rigid electrodes face the problem of foreign body reaction induced by mechanical mismatch to biological tissue, while flexible electrodes, though more preferential, lack controllability during implantation. Researchers have explored various strategies, from assistive shuttle to biodegradable coatings, to strike a balance between implantation rigidity and post-implantation flexibility. Yet, these approaches may introduce complications, including immune response, inflammations, and raising intracranial pressure. To this end, this paper proposes a novel nanorobot-based technique for direct implantation of flexible neural electrodes, leveraging the high controllability and repeatability of robotics to enhance the implantation quality. This approach features a dual-arm nanorobotic system equipped with stereo microscope, by which a flexible electrode is first visually aligned to the target neural tissue to establish contact and thereafter implanted into brain with well controlled insertion direction and depth. The key innovation is, through dual-arm coordination, the flexible electrode maintains straight along the implantation direction. With this approach, we implanted CNTf electrodes into cerebral cortex of mouse, and captured standard spiking neural signals.


Subject(s)
Brain-Computer Interfaces , Electrodes, Implanted , Robotics , Animals , Robotics/instrumentation , Mice , Equipment Design , Electroencephalography/instrumentation , Electroencephalography/methods , Nanotechnology/instrumentation , Brain/physiology
2.
Commun Mater ; 5(1): 98, 2024.
Article in English | MEDLINE | ID: mdl-38859933

ABSTRACT

Conventional topochemical photopolymerization reactions occur exclusively in precisely-engineered photoactive crystalline states, which often produces high-insoluble polymers. To mitigate this, here, we report the mechanoactivation of photostable styryldipyrylium-based monomers, which results in their amorphization-enabled solid-state photopolymerization and produces soluble and processable amorphous polymers. A combination of solid-state nuclear magnetic resonance, X-ray diffraction, and absorption/fluorescence spectroscopy reveals the crucial role of a mechanically-disordered monomer phase in yielding polymers via photo-induced [2 + 2] cycloaddition reaction. Hence, mechanoactivation and amorphization can expand the scope of topochemical polymerization conditions to open up opportunities for generating polymers that are otherwise difficult to synthesize and analyze.

3.
Angew Chem Int Ed Engl ; 62(13): e202300723, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36688731

ABSTRACT

We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.

SELECTION OF CITATIONS
SEARCH DETAIL