Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Malar J ; 23(1): 68, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443939

ABSTRACT

BACKGROUND: Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS: This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS: Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS: When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.


Subject(s)
Malaria , Superinfection , Humans , Senegal/epidemiology , Incidence , Plasmodium falciparum/genetics
2.
Nat Commun ; 15(1): 747, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272885

ABSTRACT

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.


Subject(s)
Borrelia , Malaria , Plasmodium , Humans , Senegal/epidemiology , Cross-Sectional Studies , Malaria/diagnosis , Malaria/epidemiology , Fever/epidemiology , Borrelia/genetics
3.
Res Sq ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961451

ABSTRACT

Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programs (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. Here, we examined parasites from 3,147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, we constructed a series of Poisson generalized linear mixed-effects models to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. We compared the model-predicted incidence with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (<10/1000/annual [‰]). When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence >10 ‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was <10 ‰, we found that many of the correlations between parasite genetics and incidence were reversed, which we hypothesize reflects the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.

4.
Nat Commun ; 14(1): 7268, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949851

ABSTRACT

We here analyze data from the first year of an ongoing nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal. The analysis is based on 1097 samples collected at health facilities during passive malaria case detection in 2019; it provides a baseline for analyzing parasite genetic metrics as they vary over time and geographic space. The study's goal was to identify genetic metrics that were informative about transmission intensity and other aspects of transmission dynamics, focusing on measures of genetic relatedness between parasites. We found the best genetic proxy for local malaria incidence to be the proportion of polygenomic infections (those with multiple genetically distinct parasites), although this relationship broke down at low incidence. The proportion of related parasites was less correlated with incidence while local genetic diversity was uninformative. The type of relatedness could discriminate local transmission patterns: two nearby areas had similarly high fractions of relatives, but one was dominated by clones and the other by outcrossed relatives. Throughout Senegal, 58% of related parasites belonged to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci and at one novel locus, reflective of ongoing selection pressure.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Senegal/epidemiology , Malaria/epidemiology , Plasmodium falciparum/genetics
5.
medRxiv ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37662407

ABSTRACT

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata from febrile patients and healthy controls in a low malaria burden area. Using 16S and unbiased sequencing, we detected viral, bacterial, or eukaryotic pathogens in 29% of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15% and 3.7% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model to distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs. These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.

6.
medRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37131838

ABSTRACT

Parasite genetic surveillance has the potential to play an important role in malaria control. We describe here an analysis of data from the first year of an ongoing, nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal, intended to provide actionable information for malaria control efforts. Looking for a good proxy for local malaria incidence, we found that the best predictor was the proportion of polygenomic infections (those with multiple genetically distinct parasites), although that relationship broke down in very low incidence settings (r = 0.77 overall). The proportion of closely related parasites in a site was more weakly correlated ( r = -0.44) with incidence while the local genetic diversity was uninformative. Study of related parasites indicated their potential for discriminating local transmission patterns: two nearby study areas had similarly high fractions of relatives, but one area was dominated by clones and the other by outcrossed relatives. Throughout the country, 58% of related parasites proved to belong to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci as well as at one novel locus, reflective of ongoing selection pressure.

7.
PNAS Nexus ; 1(4): pgac187, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36246152

ABSTRACT

Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high transmission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the transmission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite transmission intensity. Here, we describe a new metric, R H, that utilizes the correlation in allelic state (heterozygosity) within polygenomic infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. R H is flexible and can be applied to any type of genetic data. As a proof of concept, we used R H to quantify polygenomic relatedness and estimate cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to 53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infections to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities.

8.
Sci Rep ; 11(1): 10321, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990632

ABSTRACT

Dengue virus is a major and rapidly growing public health concern in tropic and subtropic regions across the globe. In late 2018, Senegal experienced its largest dengue virus outbreak to date, covering several regions. However, little is known about the genetic diversity of dengue virus (DENV) in Senegal. Here we report complete viral genomes from 17 previously undetected DENV cases from the city of Thiès. In total we identified 19 cases of DENV in a cohort of 198 individuals with fever collected in October and November 2018. We detected 3 co-circulating serotypes; DENV 3 was the most frequent accounting for 11/17 sequences (65%), 4 (23%) were DENV2 and 2 (12%) were DENV1. Sequences were most similar to recent sequences from West Africa, suggesting ongoing local circulation of viral populations; however, detailed inference is limited by the scarcity of available genomic data. We did not find clear associations with reported clinical signs or symptoms, highlighting the importance of testing for diagnosing febrile diseases. Overall, these findings expand the known range of DENV in Senegal, and underscore the need for better genomic characterization of DENV in West Africa.


Subject(s)
Dengue Virus/genetics , Dengue/virology , Disease Outbreaks/statistics & numerical data , Adolescent , Adult , Aged , Child , Child, Preschool , DNA, Viral/isolation & purification , Dengue/blood , Dengue/diagnosis , Dengue/epidemiology , Dengue Virus/isolation & purification , Female , Genome, Viral , Humans , Male , Middle Aged , Molecular Epidemiology , Phylogeny , Senegal/epidemiology , Serogroup , Young Adult
9.
PLoS Negl Trop Dis ; 11(10): e0005884, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28972982

ABSTRACT

As effective onchocerciasis control efforts in Africa transition to elimination efforts, different diagnostic tools are required to support country programs. Senegal, with its long standing, successful control program, is transitioning to using the SD BIOLINE Onchocerciasis IgG4 (Ov16) rapid test over traditional skin snip microscopy. The aim of this study is to demonstrate the feasibility of integrating the Ov16 rapid test into onchocerciasis surveillance activities in Senegal, based on the following attributes of acceptability, usability, and cost. A cross-sectional study was conducted in 13 villages in southeastern Senegal in May 2016. Individuals 5 years and older were invited to participate in a demographic questionnaire, an Ov16 rapid test, a skin snip biopsy, and an acceptability interview. Rapid test technicians were interviewed and a costing analysis was conducted. Of 1,173 participants, 1,169 (99.7%) agreed to the rapid test while 383 (32.7%) agreed to skin snip microscopy. The sero-positivity rate of the rapid test among those tested was 2.6% with zero positives 10 years and younger. None of the 383 skin snips were positive for Ov microfilaria. Community members appreciated that the rapid test was performed quickly, was not painful, and provided reliable results. The total costs for this surveillance activity was $22,272.83, with a cost per test conducted at $3.14 for rapid test, $7.58 for skin snip microscopy, and $13.43 for shared costs. If no participants had refused skin snip microscopy, the total cost per method with shared costs would have been around $16 per person tested. In this area with low onchocerciasis sero-positivity, there was high acceptability and perceived value of the rapid test by community members and technicians. This study provides evidence of the feasibility of implementing the Ov16 rapid test in Senegal and may be informative to other country programs transitioning to Ov16 serologic tools.


Subject(s)
Antibodies, Helminth/blood , Immunoglobulin G/blood , Onchocerca volvulus/immunology , Onchocerciasis/diagnosis , Population Surveillance/methods , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Cross-Sectional Studies , Feasibility Studies , Female , Health Care Costs , Humans , Male , Middle Aged , Onchocerciasis/blood , Onchocerciasis/economics , Onchocerciasis/epidemiology , Patient Acceptance of Health Care , Senegal/epidemiology , Serologic Tests/economics , Serologic Tests/methods , Young Adult
10.
Malar J ; 16(1): 250, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615016

ABSTRACT

BACKGROUND: The monitoring of Plasmodium falciparum sensitivity to anti-malarial drugs is a necessity for effective case management of malaria. This species is characterized by a strong resistance to anti-malarial drugs. In Senegal, the first cases of chloroquine resistance were reported in the Dakar region in 1988 with nearly 7% population prevalence, reaching 47% by 1990. It is in this context that sulfadoxine-pyrimethamine temporarily replaced chloroquine as first line treatment in 2003, pending the introduction of artemisinin-based combination therapy in 2006. The purpose of this study is to assess the ex vivo sensitivity to different anti-malarial drugs of the P. falciparum population from Pikine. METHODS: Fifty-four samples were collected from patients with non-complicated malaria and aged between 2 and 20 years in the Deggo health centre in Pikine in 2014. An assay in which parasites are stained with 4', 6-di-amidino-2-phenylindole (DAPI), was used to study the ex vivo sensitivity of isolates to chloroquine, amodiaquine, piperaquine, pyrimethamine, and dihydroartemisinin. High resolution melting was used for genotyping of pfdhps, pfdhfr, pfmdr1, and pfcrt genes. RESULTS: The mean IC50s of chloroquine, amodiaquine, piperaquine, dihydroartemisinin, and pyrimethamine were, respectively, 39.44, 54.02, 15.28, 2.23, and 64.70 nM. Resistance mutations in pfdhfr gene, in codon 437 of pfdhps gene, and an absence of mutation at position 540 of pfdhps were observed. Mutations in codons K76T of pfcrt and N86Y of pfmdr1 were observed at 51 and 11% population prevalence, respectively. A relationship was found between the K76T and N86Y mutations and ex vivo resistance to chloroquine. CONCLUSION: An increase in sensitivity of isolates to chloroquine was observed. A high sensitivity to dihydroartemisinin was observed; whereas, a decrease in sensitivity to pyrimethamine was observed in the parasite population from Pikine.


Subject(s)
Antimalarials/pharmacology , Malaria/parasitology , Plasmodium falciparum/drug effects , Adolescent , Amodiaquine/pharmacology , Artemisinins/pharmacology , Child , Child, Preschool , Chloroquine/pharmacology , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Drug Resistance/genetics , Fluorescent Dyes , Genotype , Genotyping Techniques , Humans , Indoles , Inhibitory Concentration 50 , Mutation , Parasitic Sensitivity Tests , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Pyrimethamine/pharmacology , Quinolines/pharmacology , Senegal , Young Adult
11.
PLoS Negl Trop Dis ; 10(12): e0005198, 2016 12.
Article in English | MEDLINE | ID: mdl-27926918

ABSTRACT

In Africa, onchocerciasis and lymphatic filariasis (LF) are co-endemic in many areas. Current efforts to eliminate both diseases are through ivermectin-based mass drug administration (MDA). Years of ivermectin distribution for onchocerciasis may have interrupted LF transmission in certain areas. The Kédougou region, Senegal, is co-endemic for LF and onchocerciasis. Though MDA for onchocerciasis started in 1988, in 2014 albendazole had not yet been added for LF. The objective of this study was to assess in an integrated manner the LF and onchocerciasis status in the three districts of the Kédougou region after ≥10 years of ivermectin-based MDA. The study employed an African Programme for Onchocerciasis Control (APOC) onchocerciasis-related methodology. In the three districts, 14 villages close to three rivers that have Simulium damnosum breeding sites were surveyed. Convenience sampling of residents ≥5 years old was performed. Assessment for LF antigenemia by immunochromatographic testing (ICT) was added to skin snip microscopy for onchocerciasis. Participants were also tested for antibodies against Wb123 (LF) and Ov16 (onchocerciasis) antigens. In two districts, no participants were ICT or skin snip positive. In the third district, 3.5% were ICT positive and 0.7% were skin snip positive. In all the three districts, Wb123 prevalence was 0.6%. Overall, Ov16 prevalence was 6.9%. Ov16 prevalence among children 5-9 years old in the study was 2.5%. LF antigenemia prevalence was still above treatment threshold in one district despite ≥10 years of ivermectin-based MDA. The presence of Ov16 positive children suggested recent transmission of Onchocerca volvulus. This study showed the feasibility of integrated evaluation of onchocerciasis and LF but development of integrated robust methods for assessing transmission of both LF and onchocerciasis are needed to determine where MDA can be stopped safely in co-endemic areas.


Subject(s)
Elephantiasis, Filarial/drug therapy , Ivermectin/therapeutic use , Onchocerciasis/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Helminth/blood , Child , Child, Preschool , Elephantiasis, Filarial/blood , Elephantiasis, Filarial/epidemiology , Female , Humans , Male , Middle Aged , Onchocerciasis/blood , Onchocerciasis/epidemiology , Senegal/epidemiology , Treatment Outcome , Young Adult
12.
Am J Trop Med Hyg ; 95(5): 1054-1060, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27549635

ABSTRACT

In 2006, artemether-lumefantrine (AL) became the first-line treatment of uncomplicated malaria in Senegal, Mali, and the Gambia. To monitor its efficacy, between August 2011 and November 2014, children with uncomplicated Plasmodium falciparum malaria were treated with AL and followed up for 42 days. A total of 463 subjects were enrolled in three sites (246 in Senegal, 97 in Mali, and 120 in Gambia). No early treatment failure was observed and malaria infection cleared in all patients by day 3. Polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) was 100% in Mali, and the Gambia, and 98.8% in Senegal. However, without PCR adjustment, ACPR was 89.4% overall; 91.5% in Mali, 98.8% in Senegal, and 64.3% in the Gambia (the lower value in the Gambia attributed to poor compliance of the full antimalarial course). However, pfmdr1 mutations were prevalent in Senegal and a decrease in parasite sensitivity to artesunate and lumefantrine (as measured by ex vivo drug assay) was observed at all sites. Recrudescent parasites did not show Kelch 13 (K13) mutations and AL remains highly efficacious in these west African sites.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance/genetics , Ethanolamines/therapeutic use , Fluorenes/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Adolescent , Amino Acid Sequence , Artemether , Child , Child, Preschool , Follow-Up Studies , Gambia , Genetic Loci , Humans , Lumefantrine , Mali , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Senegal , Young Adult
13.
Malar J ; 15(1): 433, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27562216

ABSTRACT

BACKGROUND: The use of artemisinin as a monotherapy resulted in the emergence of artemisinin resistance in 2005 in Southeast Asia. Monitoring of artemisinin combination therapy (ACT) is critical in order to detect and prevent the spread of resistance in endemic areas. Ex vivo studies and genotyping of molecular markers of resistance can be used as part of this routine monitoring strategy. One gene that has been associated in some ACT partner drug resistance is the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene. The purpose of this study was to assess the drug susceptibility of P. falciparum populations from Thiès, Senegal by ex vivo assay and typing molecular markers of resistance to drug components of ACT currently used for treatment. METHODS: The ex vivo susceptibility of 170 P. falciparum isolates to chloroquine, amodiaquine, lumefantrine, artesunate, and artemether was determined using the DAPI ex vivo assay. The high resolution melting technique was used to genotype the pfmdr1 gene at codons 86, 184 and 1246. RESULTS: A significant decrease in IC50 values was observed between 2012 and 2013: from 13.84 to 6.484 for amodiaquine, 173.4 to 113.2 for lumefantrine, and 39.72 to 18.29 for chloroquine, respectively. Increase of the wild haplotype NYD and the decrease of the mutant haplotype NFD (79 and 62.26 %) was also observed. A correlation was observed between the wild type allele Y184 in pfmdr1 and higher IC50 for all drugs, except amodiaquine. CONCLUSION: This study has shown an increase in sensitivity over the span of two transmission seasons, marked by an increase in the WT alleles at pfmdr1. Continuous the monitoring of the ACT used for treatment of uncomplicated malaria will be helpful.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Ethanolamines/pharmacology , Fluorenes/pharmacology , Gene Frequency , Haplotypes , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/drug effects , Selection, Genetic , Adolescent , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination , Artemisinins/therapeutic use , Child , Child, Preschool , Drug Combinations , Ethanolamines/therapeutic use , Female , Fluorenes/therapeutic use , Genetics, Population , Genotyping Techniques , Humans , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Senegal , Young Adult
14.
Genetics ; 193(4): 1221-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23335339

ABSTRACT

Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing.


Subject(s)
Anopheles/genetics , Genetic Speciation , Africa, Western , Animals , Breeding , Chimera , Chromosomes, Insect/genetics , Gene Frequency , Genome, Insect , Genotype , Phylogeography , Polymorphism, Single Nucleotide , Population/genetics , Seasons , X Chromosome/genetics
15.
Acta Trop ; 121(3): 175-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22142790

ABSTRACT

With the paradigm shift from the reduction of morbidity and mortality to the interruption of transmission, the focus of malaria control broadens from symptomatic infections in children ≤5 years of age to include asymptomatic infections in older children and adults. In addition, as control efforts intensify and the number of interventions increases, there will be decreases in prevalence, incidence and transmission with additional decreases in morbidity and mortality. Expected secondary consequences of these changes include upward shifts in the peak ages for infection (parasitemia) and disease, increases in the ages for acquisition of antiparasite humoral and cellular immune responses and increases in false-negative blood smears and rapid diagnostic tests. Strategies to monitor these changes must include: (1) studies of the entire population (that are not restricted to children ≤5 or ≤10 years of age), (2) study sites in both cities and rural areas (because of increasing urbanization across sub-Saharan Africa) and (3) innovative strategies for surveillance as the prevalence of infection decreases and the frequency of false-negative smears and rapid diagnostic tests increases.


Subject(s)
Communicable Disease Control/methods , Disease Transmission, Infectious/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum/pathogenicity , Africa, Western/epidemiology , Animals , Anopheles/parasitology , Antibodies, Protozoan/immunology , Antimalarials/pharmacology , Communicable Disease Control/legislation & jurisprudence , Communicable Disease Control/organization & administration , Drug Resistance, Microbial , Genotype , Humans , Immunity, Cellular , Incidence , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , National Health Programs/organization & administration , Parasitemia/epidemiology , Parasitemia/immunology , Parasitemia/parasitology , Parasitemia/prevention & control , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Prevalence , Seasons , Sensitivity and Specificity
16.
Acta Trop ; 121(3): 166-74, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22119584

ABSTRACT

The study sites for the West African ICEMR are in three countries (The Gambia, Senegal, Mali) and are located within 750 km of each other. In addition, the National Malaria Control Programmes of these countries have virtually identical policies: (1) Artemisinin Combination Therapies (ACTs) for the treatment of symptomatic Plasmodium falciparum infection, (2) Long-Lasting Insecticide-treated bed Nets (LLINs) to reduce the Entomololgic Inoculation Rate (EIR), and (3) sulfadoxine-pyrimethamine for the Intermittent Preventive Treatment of malaria during pregnancy (IPTp). However, the prevalence of P. falciparum malaria and the status of malaria control vary markedly across the four sites with differences in the duration of the transmission season (from 4-5 to 10-11 months), the intensity of transmission (with EIRs from unmeasurably low to 4-5 per person per month), multiplicity of infection (from a mean of 1.0 to means of 2-5) and the status of malaria control (from areas which have virtually no control to areas that are at the threshold of malaria elimination). The most important priority is the need to obtain comparable data on the population-based prevalence, incidence and transmission of malaria before new candidate interventions or combinations of interventions are introduced for malaria control.


Subject(s)
Communicable Disease Control/legislation & jurisprudence , Health Policy/legislation & jurisprudence , Malaria, Falciparum/prevention & control , Africa, Western/epidemiology , Animals , Antimalarials/pharmacology , Artemisinins/pharmacology , Communicable Disease Control/organization & administration , Culicidae/drug effects , Culicidae/parasitology , Disease Transmission, Infectious/prevention & control , Drug Combinations , Female , Humans , Insect Bites and Stings/parasitology , Insecticide-Treated Bednets , Insecticides/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , National Health Programs/legislation & jurisprudence , National Health Programs/organization & administration , Plasmodium falciparum/pathogenicity , Pregnancy , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/prevention & control , Prevalence , Pyrimethamine/therapeutic use , Seasons , Sulfadoxine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...