Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
FEBS Open Bio ; 13(9): 1615-1624, 2023 09.
Article En | MEDLINE | ID: mdl-36999634

Genetic disruption of glycosyltransferases has provided clear information on the roles of their reaction products in the body. Our group has studied the function of glycosphingolipids by genetic engineering of glycosyltransferases in cell culture and in mice, which has demonstrated both expected and unexpected results. Among these findings, aspermatogenesis in ganglioside GM2/GD2 synthase knockout mice was one of the most surprising and intriguing results. There were no sperms in testis, and multinuclear giant cells were detected instead of spermatids. Although serum levels of testosterone in the male mice were extremely low, testosterone accumulated in the interstitial tissues, including Leydig cells, and seemed not to be transferred into the seminiferous tubules or vascular cavity from Leydig cells. This was considered to be the cause of aspermatogenesis and low serum levels of testosterone. Patients with a mutant GM2/GD2 synthase gene (SPG26) showed similar clinical signs, not only in terms of the neurological aspects, but also in the male reproductive system. The mechanisms for testosterone transport by gangliosides are discussed here based on our own results and reports from other laboratories.


Gangliosides , N-Acetylgalactosaminyltransferases , Animals , Male , Mice , G(M2) Ganglioside , Gangliosides/genetics , Mice, Knockout , N-Acetylgalactosaminyltransferases/genetics , Testosterone
2.
Sci Rep ; 13(1): 4987, 2023 03 27.
Article En | MEDLINE | ID: mdl-36973292

Exosomes (small extracellular vesicles: EVs) have attracted increasing attention from basic scientists and clinicians since they play important roles in cell-to-cell communication in various biological processes. Various features of EVs have been elucidated regarding their contents, generation and secretion mechanisms, and functions in inflammation, regeneration, and cancers. These vesicles are reported to contain proteins, RNAs, microRNAs, DNAs, and lipids. Although the roles of individual components have been rigorously studied, the presence and roles of glycans in EVs have rarely been reported. In particular, glycosphingolipids in EVs have not been investigated to date. In this study, the expression and function of a representative cancer-associated ganglioside, GD2, in malignant melanomas was investigated. Generally, cancer-associated gangliosides have been shown to enhance malignant properties and signals in cancers. Notably, EVs derived from GD2-expressing melanomas enhanced the malignant phenotypes of GD2-negative melanomas, such as cell growth, invasion, and cell adhesion, in a dose-dependent manner. The EVs also induced increased phosphorylation of signaling molecules such as EGF receptor and focal adhesion kinase. These results suggest that EVs released from cancer-associated ganglioside-expressing cells exert many functions that have been reported as a function of these gangliosides and regulate microenvironments, including total aggravation of heterogeneous cancer tissues, leading to more malignant and advanced cancer types.


Extracellular Vesicles , Gangliosides , Melanoma , Tumor Microenvironment , Humans , Extracellular Vesicles/metabolism , Gangliosides/analysis , Gangliosides/metabolism , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor
3.
PLoS One ; 18(2): e0281414, 2023.
Article En | MEDLINE | ID: mdl-36827398

Gangliosides, sialic acid-containing glycosphingolipids, are widely involved in regulations of signal transductions to control cellular functions. It has been suggested that GM3, the simplest structure among gangliosides, is involved in insulin resistance, whereas it remains unclear whether insulin signaling diminished by GM3 actually aggravates the pathological conditions in metabolic disorders. Moreover, the functional roles of gangliosides in the regulation of insulin signaling have not yet been fully elucidated in liver or hepatocytes despite that it is one of the major insulin-sensitive organs. To understand physiological roles of GM3 in metabolic homeostasis in liver, we conducted a high fat diet (HFD) loading experiment using double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase, which lack all gangliosides except GM3, as well as wild-type (WT) mice. DKO mice were strikingly resistant to HFD-induced hepatosteatosis, and hepatic lipogenesis-related molecules including insulin signaling components were down-regulated in HFD-fed DKO. Furthermore, we established primary hepatocyte cultures from DKO and WT mice, and examined their responses to insulin in vitro. Following insulin stimulation, DKO hepatocytes expressing GM3 showed attenuated expression and/or activations in the downstream components compared with WT hepatocytes expressing GM2. While insulin stimulation induced lipogenic proteins in hepatocytes from both genotypes, their expression levels were lower in DKO than in WT hepatocytes after insulin treatment. All our findings suggest that the modified gangliosides, i.e., a shift to GM3 from GM2, might exert a suppressive effect on lipogenesis by attenuating insulin signaling at least in mouse hepatocytes, which might result in protection of HFD-induced hepatosteatosis.


G(M3) Ganglioside , Insulin Resistance , Mice , Animals , Insulin/metabolism , Diet, High-Fat , Signal Transduction , Gangliosides/metabolism , Insulin, Regular, Human , G(M2) Ganglioside
4.
Glycoconj J ; 39(2): 145-155, 2022 04.
Article En | MEDLINE | ID: mdl-35315508

Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be "autologous typing" performed by Old's group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient's sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.


Glycolipids , Neoplasms , Animals , Antigens, Tumor-Associated, Carbohydrate , Biomarkers, Tumor , Humans , Signal Transduction
5.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article En | MEDLINE | ID: mdl-35008849

Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2-) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin ß1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin ß1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin ß1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin ß1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin ß1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2- cells. All these results suggest that GD2 and integrin ß1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.


Gangliosides/metabolism , Integrins/metabolism , Melanoma/pathology , Animals , Antibodies, Monoclonal/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Collagen Type I/metabolism , Gangliosides/immunology , Humans , Integrin beta1/metabolism , Mass Spectrometry , Membrane Microdomains/metabolism , Mice , Phenotype , Phosphotyrosine/metabolism , Signal Transduction/drug effects
6.
J Biochem ; 168(2): 103-112, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32282910

The readthrough of premature termination codon (PTC) by ribosome sometimes produces full-length proteins. We previously reported a readthrough of PTC of glycosyltransferase gene B4GALNT1 with hereditary spastic paraplegia (HSP). Here we featured the readthrough of B4GALNT1 of two mutants, M4 and M2 with PTC by immunoblotting and flow cytometry after transfection of B4GALNT1 cDNAs into cells. Immunoblotting showed a faint band of full-length mutant protein of M4 but not M2 at a similar position with that of wild-type B4GALNT1. AGC sequences at immediately before and after the PTC in M4 were critical for the readthrough. Treatment of cells transfected with mutant M4 cDNA with aminoglycosides resulted in increased readthrough of PTC. Furthermore, treatment of transfectants of mutant M2 cDNA with G418 also resulted in the induction of readthrough of PTC. Both M4 and M2 cDNA transfectants showed increased/induced bands in immunoblotting and GM2 expression in a dose-dependent manner of aminoglycosides. Results of mass spectrometry supported this effect. Here, we showed for the first time the induction and/or enhancement of the readthrough of PTCs of B4GALNT1 by aminoglycoside treatment, suggesting that aminoglycosides are efficient for patients with HSP caused by PTC of B4GALNT1, in which gradual neurological disorders emerged with aging.


Aminoglycosides/pharmacology , Codon, Nonsense/drug effects , Codon, Terminator/drug effects , N-Acetylgalactosaminyltransferases/genetics , Spastic Paraplegia, Hereditary/genetics , Animals , CHO Cells , Cells, Cultured , Codon, Nonsense/genetics , Codon, Terminator/genetics , Cricetulus , Mice , Mutation
7.
Int J Mol Sci ; 21(6)2020 Mar 11.
Article En | MEDLINE | ID: mdl-32168753

Acidic glycosphingolipids, i.e., gangliosides, are predominantly and consistently expressed in nervous tissues of vertebrates at high levels. Therefore, they are considered to be involved in the development and function of nervous systems. Recent studies involving genetic engineering of glycosyltransferase genes have revealed novel aspects of the roles of gangliosides in the regulation of nervous tissues. In this review, novel findings regarding ganglioside functions and their modes of action elucidated mainly by studies of gene knockout mice are summarized. In particular, the roles of gangliosides in the regulation of lipid rafts to maintain the integrity of nervous systems are reported with a focus on the roles in the regulation of neuro-inflammation and neurodegeneration via complement systems. In addition, recent advances in studies of congenital neurological disorders due to genetic mutations of ganglioside synthase genes and also in the techniques for the analysis of ganglioside functions are introduced.


Acidic Glycosphingolipids/metabolism , Glycosyltransferases/genetics , Nervous System/metabolism , Acidic Glycosphingolipids/genetics , Animals , Genetic Engineering , Membrane Microdomains/metabolism , Mice , Mice, Knockout
8.
Sci Rep ; 9(1): 14740, 2019 10 14.
Article En | MEDLINE | ID: mdl-31611597

Analyses of expression and regulation of ganglioside synthases in melanocytes are important to understand roles of gangliosides in melanomagenesis. In this study, we analyzed the expression and regulatory mechanisms of glycosyltransferase genes responsible for ganglioside synthesis in normal melanocytes. We reported previously that culture supernatants of UVB-irradiated keratinocytes induced upregulation of ganglioside GD3 synthase gene in melanocytes, and mainly TNFα was responsible for it. Then, we found that elimination of dibutyryl cyclic AMP and IBMX from the medium also resulted in upregulation of the GD3 synthase gene. The addition of α-melanocyte-stimulating hormone which increases cAMP, to the medium led to a significant reduction in the GD3 synthase gene expression level, and a PKA inhibitor enhanced the GD3 synthase gene level. These results suggest that signals mediated via TNFα and cAMP oppositely regulate GD3 synthase gene expression in melanocytes. The results of an IKK inhibitor indicate the possibility that TNFα induces GD3 synthase gene expression via NF-κB signaling in melanocytes. When melanoma cells were treated by these factors, no fluctuation in the GD3 synthase gene expression level was observed, although an IKK inhibitor significantly suppressed it, suggesting that ganglioside synthase genes are regulated in distinct manners between melanocytes and melanomas.


Cyclic AMP/metabolism , Melanoma/metabolism , Sialyltransferases/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Cell Line , Gene Expression Regulation , Humans , Melanocytes , Melanoma/genetics , Sialyltransferases/metabolism
9.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(3): 136-149, 2019.
Article En | MEDLINE | ID: mdl-30853699

Since globotetraosylceramide was defined as a major glycosphingolipid in human erythrocytes, various glycolipids have been found in normal cells and diseased organs. However, the implications of their polymorphic structures in the function of individual cells and tissues have not been clarified. Genetic manipulation of glycosphingolipids in cultured cells and experimental animals has enabled us to substantially elucidate their roles. In fact, great progress has been achieved in the last 70 years in revealing that glycolipids are essential in the maintenance of integrity of nervous tissues and other organs. Furthermore, the correct composition of glycosphingolipids has been shown to be critical for the protection against inflammation and degeneration. Here, we summarized historic information and current knowledge about glycosphingolipids, with a focus on their involvement in inflammation and degeneration. This topic is significant for understanding the biological responses to various stresses, because glycosphingolipids play roles in the interaction with various intrinsic and extrinsic factors. These findings are also important for the application of therapeutic interventions of various diseases.


Glycosphingolipids/metabolism , Inflammation/metabolism , Neurodegenerative Diseases/metabolism , Animals , Biomarkers/metabolism , Humans , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Protein Binding , Protein Conformation , Signal Transduction
10.
Cancer Sci ; 110(5): 1544-1551, 2019 May.
Article En | MEDLINE | ID: mdl-30895683

Cancer-associated glycosphingolipids have been used as markers for diagnosis and targets for immunotherapy of malignant tumors. Recent progress in the analysis of their implications in the malignant properties of cancer cells revealed that cancer-associated glycosphingolipids are not only tumor markers, but also functional molecules regulating various signals introduced by membrane microdomains, lipid rafts. In particular, a novel approach, enzyme-mediated activation of radical sources combined with mass spectrometry, has enabled us to clarify the mechanisms by which cancer-associated glycosphingolipids regulate cell signals based on the interaction with membrane molecules and formation of molecular complexes on the cell surface. Novel findings obtained from these approaches are now providing us with insights into the development of new anticancer therapies targeting membrane molecular complexes consisting of cancer-associated glycolipids and their associated membrane molecules. Thus, a new era of cancer-associated glycosphingolipids has now begun.


Glycosphingolipids/metabolism , Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Membrane/metabolism , Humans , Mass Spectrometry , Signal Transduction
11.
PLoS One ; 13(11): e0206881, 2018.
Article En | MEDLINE | ID: mdl-30462668

Ganglioside GD3 is widely expressed in human malignant melanomas, and has been reported to be involved in the increased cell proliferation and invasion. In this study, we established GM3-, GM2-, GM1-, GD3-, or GD2-expressing melanoma cell lines by transfecting cDNAs of glyscosyltransferases, and effects of individual gangliosides on the cell phenotypes and signals were examined. The phenotypes of established ganglioside-expressing cells were quite different, i.e. cell growth increased as following order; GD2+, GD3+ > GM1+, GM2+, GM3+ cells. Cell invasion activity increased as GD3+ ≧ GM2+ > GM1+, GM3+, GD2+ cells. Intensity of cell adhesion to collagen I (CL-I) and spreading increased as GD2+ >> GD3+, GM1+ > GM2+, GM3+ cells. In particular, cell adhesion of GD2+ cells was markedly strong. As for cell migration velocity, GD2+ cells were slower than all other cells. The immunocytostaining revealed close localization of gangliosides and F-actin in lamellipodia. Immunoblotting of phosphorylated p130Cas and paxillin by serum treatment reveled that these phosphorylations were more increased in GD3+ cells than in GD2+ or GM3+ cells, while phosphorylation of Akt underwent similarly increased phosphorylation between GD3+ and GD2+ cells compared with GM3+ cells. While GD2 and GD3 enhanced cell growth, GD3 might also contribute in cell invasion. On the other hand, GD2 might contribute in the solid fixation of melanoma cells at metastasized sites. These results suggested that individual gangliosides exert distinct roles in the different aspects of melanomas by differentially regulating cytoskeletons and signaling molecules.


Carcinogenesis/pathology , Gangliosides/metabolism , Melanoma/pathology , Skin Neoplasms/pathology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans
12.
Prog Mol Biol Transl Sci ; 156: 265-287, 2018.
Article En | MEDLINE | ID: mdl-29747817

Gangliosides play roles in the regulation of cell signaling that are mediated via membrane microdomains, lipid rafts. In this review, functions of gangliosides in the maintenance of nervous systems with a focus on regulation of inflammation and neurodegeneration are addressed. During analyses of various ganglioside-lacking mutant mice, we demonstrated that nervous tissues exhibited inflammatory reactions and subsequent neurodegeneration. Among inflammation-related genes, factors of the complement system showed up-regulation with aging. Analyses of architectures and compositions of lipid rafts in nervous tissues from these mutant mice revealed that dysfunctions of complement regulatory proteins based on disrupted lipid rafts were main factors to induce the inflammatory reactions resulting in neurodegeneration. Ganglioside changes in development and senescence, and implication of them in the integrity of cell membranes and cellular phenotypes in physiological and pathological conditions including Alzheimer disease have been summarized. Novel directions to further analyze mechanisms for ganglioside functions in membrane microdomains have been also addressed.


Gangliosides/metabolism , Inflammation/physiopathology , Neurodegenerative Diseases/physiopathology , Animals , Humans
13.
Biochim Biophys Acta Gen Subj ; 1861(10): 2479-2484, 2017 Oct.
Article En | MEDLINE | ID: mdl-28602513

Gene knockout mice of glycosyltransferases have clearly showed roles of their products in the bodies, while there are examples where phenotype of knockout was much less severe than expected probably due to functional redundancy. The most striking novel finding obtained from ganglioside-deficient mice was that progressive inflammatory reaction took place, leading to neurodegeneration. In particular, dysfunction of complement-regulatory proteins due to deteriorated architecture of lipid rafts seemed to be essential mechanisms for the inflammation. Furthermore, roles of gangliosides in neurons were demonstrated by neuron-specific transgenic of B4galnt1 with genetic background of B4galnt1 deficiency. From study of gene knockout mice of St8sia1, new roles of b-series gangliosides in leptin secretion from adipocytes, and roles of a-series gangliosides in leptin receptor, ObR in hypothalamus were demonstrated, leading to apparent intact balance of energy. Essential roles of b-series gangliosides in malignant properties of gliomas were also shown, suggesting their roles in the regulation of inflammation and proliferation in nervous tissues. How to apply these findings for the control of newly discovered patients with ganglioside deficiency remains to be investigated. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Gangliosides/metabolism , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Neoplasms, Nerve Tissue/metabolism , Nerve Tissue/metabolism , Animals , Complement System Proteins/genetics , Complement System Proteins/metabolism , Glioma/genetics , Glioma/pathology , Humans , Inflammation , Leptin/genetics , Leptin/metabolism , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mice , Mice, Knockout , N-Acetylgalactosaminyltransferases/deficiency , N-Acetylgalactosaminyltransferases/genetics , Neoplasms, Nerve Tissue/genetics , Neoplasms, Nerve Tissue/pathology , Nerve Tissue/pathology , Neurons/metabolism , Neurons/pathology , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sialyltransferases/deficiency , Sialyltransferases/genetics
14.
Arch Biochem Biophys ; 571: 58-65, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25688919

Recent progress in the biological sciences has revealed that a number of extrinsic and intrinsic environmental factors may cause chronic inflammation. When these insults are persistent or intermittently repeated, regardless of extrinsic or intrinsic origins, homeostasis of our bodies would be disturbed and undergo long-term impact. These situations might give rise to chronic inflammation, leading to various diseases as results of accumulative effects of various inflammatory reactions. Complex carbohydrates expressed mainly on the cell surface have been demonstrated to play roles in fine-tuning of various biological processes to maintain homeostasis of cells, organs and our bodies. When abnormal physicochemical insults and harmful pathogens invade, the fine-tuning including modification of the glycosylation patterns is continuously exerted. Therefore, defects in the proper response with proper glycosylation lead to chronic inflammation and subsequent deterioration of individual tissues and organs. Genetic depletion of sialic acid-containing glycolipids, gangliosides resulted in the inflammation of CNS and neurodegeneration. Lactosylceramide was also reported to mediate neuroinflammation, leading to chronic inflammatory diseases. Defects of globoseries glycolipids resulted in the increased sensitivity to LPS toxicity. Thus, possibilities that manipulation of synthesis and expression of glycosphingolipids may be applicable for the disease control are now proposed.


Glycosphingolipids/physiology , Inflammation/metabolism , Neurodegenerative Diseases/metabolism , Animals , Brain/metabolism , Brain/pathology , Complement Activation , Gangliosides/genetics , Gangliosides/metabolism , Globosides/metabolism , Glycosphingolipids/genetics , Humans , Inflammation/pathology , Mice , Mice, Knockout , Mutation , Neurodegenerative Diseases/pathology , Neuroglia/physiology , Spinal Cord/metabolism , Spinal Cord/pathology
15.
Adv Neurobiol ; 9: 307-20, 2014.
Article En | MEDLINE | ID: mdl-25151385

The highest expression of gangliosides, sialic acid-containing glycosphingolipids (GSLs), is found in the nervous tissue of vertebrates. Changes in the profiles of gangliosides during the development of nervous tissues indicate that they are involved in the regulation of neurogenesis and synaptogenesis. Their distinct distribution patterns support the suggestion that they are involved in both the differentiation and function of neural cells. In addition to results of studies of GSLs done using biochemical, histopathological, and cell biological approaches, recent progress in the genetic engineering of glycosyltransferase genes has resulted in novel findings and concepts about their roles in the nervous system. Roles of GSLs in the regulation of signaling that determine cell fates in membrane microdomains such as lipid rafts have been extensively studied. In particular, gene targeting of glycosyltransferases in mice has enabled investigation of the in vivo functions of GSLs. The majority of abnormal phenotypes exhibited by knockout (KO) mice may reflect an abnormal structure and a resultant altered function of lipid rafts caused by alterations in their GSL composition. Generally speaking, abnormal phenotypes found in most KO mice were milder than expected, suggesting that the remaining GSLs compensate for the functions of those lost. There are also functions that cannot be replaced by the remaining GSLs. Thus, there may be two modes of function of GSLs: one is nonspecific and can be carried out by multiple GSLs, the second mode is that in which the function of the missing GSL(s) cannot be compensated by others. Identification of natural ligands for individual GSLs is crucial in order to clarify the functions of each structure.

16.
J Neuroinflammation ; 11: 61, 2014 Mar 28.
Article En | MEDLINE | ID: mdl-24673754

BACKGROUND: Gangliosides, sialic acid-containing glycosphingolipids, are highly expressed in nervous systems of vertebrates and have been considered to be involved in the development, differentiation, and function of nervous tissues. Recent studies with gene-engineered animals have revealed that they play roles in the maintenance and repair of nervous tissues. In particular, knockout (KO) mice of various ganglioside synthase genes have exhibited progressive neurodegeneration with aging. However, neurological disorders and pathological changes in the spinal cord of these KO mice have not been reported to date. Therefore, we examined neurodegeneration in double knockout (DKO) mice of ganglioside GM2/GD2 synthase (B4GANLT1) and GD3 synthase (ST8SIA1) genes to clarify roles of gangliosides in the spinal cord. METHODS: Motor neuron function was examined by gait analysis, and sensory function was analyzed by von Frey test. Pathological changes were analyzed by staining tissue sections with Klüver-Barrera staining and by immunohistochemistry with F4/80 and glial fibrillary acidic protein (GFAP). Gene expression profiles were examined by using DNA micro-array of RNAs from the spinal cord of mice. Triple knockout mice were generated by mating DKO and complement component 3 (C3)-KO mice. Gene expression of the complement system and cytokines was examined by reverse transcription-polymerase chain reaction (RT-PCR) as a function of age. RESULTS: DKO mice showed progressive deterioration with aging. Correspondingly, they exhibited shrunk spinal cord, reduced thickness of spinal lamina II and III, and reduced neuronal numbers in spinal lamina IX, spinal lamina II, and spinal lamina I. Complement-related genes were upregulated in DKO spinal cord. Moreover, complement activation and inflammatory reactions were detected by GFAP-active astrocyte, microglial accumulation, and increased inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) and interleukin-1-beta (IL-1ß). Triple knockout mice showed restoration of reduced neuron numbers in the spinal cord of DKO mice, getting close to levels of wild-type mice. CONCLUSIONS: Disruption in the architecture of lipid rafts in the spinal cord was not so prominent, suggesting that mechanisms distinct from those reported might be involved in the complement activation in the spinal cord of DKO mice. Gene profiling revealed that inflammation and neurodegeneration in the spinal cord of DKO mice are, at least partly, dependent on complement activation.


Complement C3/metabolism , Gangliosides/deficiency , Inflammation/genetics , Inflammation/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Spinal Cord/metabolism , Animals , Antigens, Differentiation/metabolism , Chromatography, Thin Layer , Complement C3/genetics , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Glial Fibrillary Acidic Protein/metabolism , Glycolipids/metabolism , Inflammation/physiopathology , Mice , Mice, Knockout , N-Acetylgalactosaminyltransferases/deficiency , N-Acetylgalactosaminyltransferases/genetics , Neurodegenerative Diseases/physiopathology , Oligonucleotide Array Sequence Analysis , Pain Measurement , Sialyltransferases/deficiency , Sialyltransferases/genetics
17.
Biochem Biophys Res Commun ; 445(2): 504-10, 2014 Mar 07.
Article En | MEDLINE | ID: mdl-24548412

Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.


Interleukin-6/immunology , Keratinocytes/radiation effects , Melanocytes/enzymology , Melanoma/enzymology , Sialyltransferases/genetics , Tumor Necrosis Factor-alpha/immunology , Cell Line , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Keratinocytes/immunology , Melanocytes/immunology , Melanocytes/radiation effects , Melanoma/genetics , Melanoma/immunology , Sialyltransferases/immunology , Ultraviolet Rays , Up-Regulation
18.
Cancer Sci ; 105(1): 52-63, 2014 Jan.
Article En | MEDLINE | ID: mdl-24372645

Ganglioside GD3 is highly expressed in human melanomas and enhances malignant properties of melanomas, such as cell proliferation and invasion activity. In this study, we analyzed the effects of GD3 expression on cell signals triggered by hepatocyte growth factor (HGF)/Met interaction and by adhesion to collagen type I (CL-I). Although stimulation of melanoma N1 cells (GD3+ and GD3-) with either HGF or adhesion to CL-I did not show marked differences in the phosphorylation levels of Akt at Ser473 and Thr308 between two types of cells, simultaneous treatment resulted in definite and markedly increased activation of Akt in GD3+ cells. Similar increases were also shown in Erk1/2 phosphorylation levels with the costimulation in GD3+ cells. When resistance to induced apoptosis by H2O2 was examined, only GD3+ cells treated with both HGF and adhesion to CL-I showed clearly low percentages of dead cells compared with GD3- cells or GD3+ cells treated with either one of the stimulants. Cell growth measured by 5-ethynyl-2' deoxyuridine uptake also showed synergistic effects in GD3+ cells. These results suggested that GD3 plays a crucial role in the convergence of multiple signals, leading to the synergistic effects of those signals on malignant properties of melanomas.


Gangliosides/biosynthesis , Hepatocyte Growth Factor/metabolism , Melanoma/metabolism , Apoptosis/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , Collagen Type I/genetics , Collagen Type I/metabolism , Gangliosides/genetics , Gangliosides/metabolism , Hepatocyte Growth Factor/genetics , Humans , MAP Kinase Signaling System , Melanoma/genetics , Melanoma/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction
19.
Neurochem Res ; 37(6): 1185-91, 2012 Jun.
Article En | MEDLINE | ID: mdl-22488331

Gangliosides are considered to be involved in the maintenance and repair of nervous tissues. Recently, novel roles of gangliosides in the regulation of complement system were reported. Here we summarized roles of gangliosides in the formation and maintenance of membrane microdomains in brain tissues by comparing complement activation, inflammatory reaction and disruption of glycolipid-enriched microdomain (GEM)/rafts among several mutant mice of ganglioside synthases. Depending on the defects in ganglioside compositions, corresponding up-regulation of complement-related genes, proliferation of astrocytes and infiltration of microglia were found with gradual severity. Immunoblotting of fractions separated by sucrose density gradient ultracentrifugation revealed that DAF and NCAM having GPI-anchors tended to disappear from the raft fraction with intensities of DKO > GM2/GD2 synthase KO > GD3 synthase KO > WT. The lipid raft markers tended to disperse from the raft fractions with similar intensities. Phospholipids and cholesterol also tended to decrease in GEM/rafts in GM2/GD2 synthase KO and DKO, although total amounts were almost equivalent. All these results indicate that GEM/rafts architecture is destroyed by ganglioside deficiency with gradual intensity depending on the degree of defects of their compositions. Implication of inflammation caused by deficiency of gangliosides in various neurodegenerative diseases was discussed.


Brain/metabolism , Gangliosides/physiology , Membrane Microdomains/physiology , Animals , Astrocytes/physiology , Cerebellum/metabolism , Complement System Proteins/genetics , Complement System Proteins/metabolism , Gangliosides/deficiency , Glycosylphosphatidylinositols/metabolism , Inflammation/metabolism , Membrane Microdomains/metabolism , Mice , Mice, Knockout , Microglia/physiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Up-Regulation
20.
Cancer Sci ; 102(12): 2139-49, 2011 Dec.
Article En | MEDLINE | ID: mdl-21895867

NEU3 is a membrane sialidase specific for gangliosides. Its increased expression and implication in some cancers have been reported. Here, we analyzed NEU3 expression in malignant melanoma cell lines and its roles in the cancer phenotypes. Quantitative RT-PCR revealed that high levels of the NEU3 gene were expressed at almost equivalent levels with those in colon cancers. To examine the effects of overexpression of NEU3, NEU3 cDNA-transfectant cells were established using a melanoma cell line SK-MEL-28 and its mutant N1 lacking GD3. SK-MEL-28 sublines overexpressing both the NEU3 gene and NEU3 enzyme activity showed no changes in both cell growth and ganglioside expression, while N1 cells showed a mild increase in cell proliferation with increased phosphorylation of the EGF receptor and neo-synthesis of Gb3 after NEU3 transfection. In contrast, NEU3 silencing resulted in a definite reduction in cell growth in a melanoma line MeWo, while ganglioside patterns underwent minimal changes. Phosphorylation levels of ERK1/2 with serum stimulation decreased in the NEU3-silenced cells. All these results suggest that NEU3 is highly expressed to enhance malignant phenotypes including apoptosis inhibition in malignant melanomas.


Cell Proliferation , Gangliosides/metabolism , Melanoma/metabolism , Melanoma/pathology , Neuraminidase/biosynthesis , Antigens, Tumor-Associated, Carbohydrate/biosynthesis , Apoptosis , Cell Line, Tumor , Colonic Neoplasms/metabolism , ErbB Receptors/metabolism , Humans , Melanoma/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neuraminidase/genetics , RNA Interference , RNA, Small Interfering
...