Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925455

ABSTRACT

Genetic analysis of congenital adrenal hyperplasia (CAH) has been challenging because of high homology between CYP21A2 and its pseudogene CYP21A1P. This study aimed to evaluate the clinical utility of long-read sequencing (LRS) in diagnosis of CAH attributable to 21-hydroxylase deficiency by comparing with multiplex ligation-dependent probe amplification plus Sanger sequencing. In this retrospective study, 69 samples, including 49 probands from 47 families with high-risk of CAH, were enrolled and blindly subjected to detection of CAH by LRS. The genotype results were compared with control methods, and discordant samples were validated by additional Sanger sequencing. LRS successfully identified biallelic variants of CYP21A2 in the 39 probands diagnosed as having CAH. The remaining 10 probands were not patients with CAH. Additionally, LRS directly identified two pathogenic single-nucleotide variations (SNVs; c.293-13C/A>G and c.955C>T) in the presence of interference caused by nearby insertions/deletions (indels). The cis-trans configuration of two or more SNVs and indels identified in 18 samples was directly determined by LRS without family analysis. Eight CYP21A1P/A2 or TNXA/B deletion chimeras, composed of five subtypes, were identified; and the junction sites were precisely determined. Moreover, LRS determined the exact genotype in two probands who had three heterozygous SNVs/indels and duplication, which could not be clarified by control methods. These findings highlight that LRS could assist in more accurate genotype imputation and more precise CAH diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL