Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 880: 163470, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37076008

ABSTRACT

Global climate change and rapid urbanization, mainly driven by anthropogenic activities, lead to urban flood vulnerability and uncertainty in sustainable stormwater management. This study projected the temporal and spatial variation in urban flood susceptibility during the period 2020-2050 on the basis of shared socioeconomic pathways (SSPs). A case study in Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was conducted for verifying the feasibility and applicability of this approach. GBA is predicted to encounter the increase in extreme precipitation with high intensity and frequency, along with rapid expansion of constructed areas, resulting in exacerbating of urban flood susceptibility. The areas with medium and high flood susceptibility will be expected to increase continuously from 2020 to 2050, by 9.5 %, 12.0 %, and 14.4 % under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, respectively. In terms of the assessment of spatial-temporal flooding pattern, the areas with high flood susceptibility are overlapped with that in the populated urban center in GBA, surrounding the existing risk areas, which is consistent with the tendency of construction land expansion. The approach in the present study will provide comprehensive insights into the reliable and accurate assessment of urban flooding susceptibility in response to climate change and urbanization.


Subject(s)
Floods , Urbanization , Climate Change , Hong Kong , Socioeconomic Factors
2.
Water Res ; 232: 119720, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36774753

ABSTRACT

Climate change has led to the increased intensity and frequency of extreme meteorological events, threatening the drainage capacity in urban catchments and densely built-up cities. To alleviate urban flooding disasters, strategies coupled with green and grey infrastructure have been proposed to support urban stormwater management. However, most strategies rely largely on diachronic rainfall data and ignore long-term climate change impacts. This study described a novel framework to assess and to identify the optimal solution in response to uncertainties following climate change. The assessment framework consists of three components: (1) assess and process climate data to generate long-term time series of meteorological parameters under different climate conditions; (2) optimise the design of Grey-Green infrastructure systems to establish the optimal design solutions; and (3) perform a multi-criteria assessment of economic and hydrological performance to support decision-making. A case study in Guangzhou, China was carried out to demonstrate the usability and application processes of the framework. The results of the case study illustrated that the optimised Grey-Green infrastructure could save life cycle costs and reduce total outflow (56-66%), peak flow (22-85%), and TSS (more than 60%) compared to the fully centralised grey infrastructure system, indicating its high superior in economic competitiveness and hydrological performance under climate uncertainties. In terms of spatial configuration, the contribution of green infrastructure appeared not as critical as the adoption of decentralisation of the drainage networks. Furthermore, under extreme drought scenarios, the decentralised infrastructure system exhibited an exceptionally high degree of removal performance for non-point source pollutants.


Subject(s)
Climate Change , Rain , Time Factors , Cities , China
3.
Sci Total Environ ; 859(Pt 1): 160214, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36395837

ABSTRACT

Long-term planning of urban drainage systems aimed at maintaining the sustainability of urban hydrology remains challenging. In this study, an innovative multi-stage planning framework involving two adaptation pathways for optimizing hybrid low impact development and grey infrastructure (LID-GREI) layouts in opposing chronological orders was explored. The Forward Planning and Backward Planning are adaptation pathways to increase LID in chronological order based on the initial development stage of an urban built-up area and reduce LID in reverse chronological order based on the final development stage, respectively. Two resilience indicators, which considered potential risk scenarios of extreme storms and pipeline failures, were used to evaluate the performance of optimized layouts when land-use changed and evolved over time. Compared these two pathways, Forward Planning made the optimized layouts more economical and resilient in most risk scenarios when land-use changed, while the layouts optimized by Backward Planning showed higher resilience only in the initial stage. Furthermore, a decentralized scheme in Forward Planning was chosen as the optimal solution when taking costs, reliability, resilience, and land-use changes into an overall consideration. Nevertheless, this kind of reverse optimization order offers a novel exploration in planning pathways for discovering the alternative optimization schemes. More comprehensive solutions can be provided to decision-makers. The findings will shed a light on the exploration of optimized layouts in terms of spatial configuration and resilience performance in response to land-use changes. This framework can be used to support long-term investment and planning in urban drainage systems for sustainable stormwater management.


Subject(s)
Acclimatization , Hydrology , Reproducibility of Results
4.
Article in English | MEDLINE | ID: mdl-36429461

ABSTRACT

The rational spatial allocation of Green Stormwater Infrastructure (GSI), which is an alternative land development approach for managing stormwater close to the source, exerts a crucial effect on coordinating urban development and hydrological sustainability. The balance between the supply and demand of urban facilities has been an influential standard for determining the rationality of this allocation. However, at this stage, research on evaluating planning from the perspective of supply-demand in GSI is still limited. This study proposed an evaluation method for assessing supply-demand levels in GSIs in Guangzhou, China, using the coupling coordination model consisting of Coupling Degree (CD) and Coupling Coordination Degree (CCD). Furthermore, the spatial distributions of supply-demand balance and resource mismatch were identified. The results indicated that the supply and demand levels of GSI exhibited significant spatial differences in distribution, with most streets being in short supply. The GSI exhibited a high CD value of 0.575 and a poor CCD value of 0.328, implying a significant imbalance in facility allocation. A lot of newly planned facilities failed to effectively cover the streets in need of improvement, so it became essential to adjust the planning scheme. The findings of this study can facilitate the decision-makers in assessing the supply-demand levels in GSI and provide a reference of facility allocation for the sustainable construction of Sponge City.


Subject(s)
Urban Renewal , China , Cities
5.
Chemosphere ; 253: 126681, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32278919

ABSTRACT

Rhizobacterial dynamics, relating to pollutant degradation mechanisms, over the course of plant lifespan have rarely been reported when using phytoremediation technologies for pharmaceutical-contaminated wastewater treatment. This study investigated the rhizobacterial dynamics of Typha angustifolia in constructed wetlands to treat ibuprofen (IBP)-polluted wastewater throughout plant development from seedling, vegetative, bolting, mature, to senescent stages. It was found that conventional pollutant and IBP removals increased with plant development, reaching to the best performance at bolting or mature stage (removal efficiencies: 92% organics, 52% ammonia, 60% phosphorus and 76% IBP). In the IBP-stressed wetlands, the rhizobacterial diversity during plant development was adversely affected by IBP accompanied with a reduced evenness. The bacterial communities changed dynamically at different developmental stages and showed significant differences compared to the control wetlands (free of IBP). The dominant bacteria colonized in the rhizosphere was the phylum Actinobacteria, having a final relative abundance of 0.79 and containing a large amount of genus norank_o__PeM15. Positive interactions were evident among the rhizobacteria in IBP-stressed wetlands and the predicted functions of 16S rRNA genes revealed the potential co-metabolism and metabolism of IBP. The co-metabolism of IBP might be related to root exudates such as amino acid, lipid, fatty acid and organic acid. In addition, positive correlations between the organic compounds of interstitial water (bulk environment) and the rhizobacterial communities were observed in IBP-stressed wetlands, which suggests that the influence of IBP on bulk microbiome might be able to modulate rhizosphere microbiome to achieve the degradation of IBP via co-metabolism or metabolism.


Subject(s)
Biodegradation, Environmental , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Wetlands , Animals , Bacteria/genetics , Ibuprofen , Life Cycle Stages , Microbiota , Pharmaceutical Preparations , Plant Development , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology , Typhaceae/microbiology , Wastewater , Water Pollutants, Chemical/analysis
6.
J Environ Manage ; 243: 157-167, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31096169

ABSTRACT

The effectiveness of porous pavement (PP) and bio-retention cells (BCs) under the influence of potential climate change was investigated based on representative concentration pathways (RCPs). A case study of a test catchment in Guangzhou illustrated changes of peak runoff under various climate scenarios. There were distinct increases in runoff volume and peak discharge in response to RCP8.5 but only marginal increases in response to RCP2.6 (compared with present conditions). The performance of PP and BCs in terms of percentage reduction of runoff volume and peak discharge was examined for 1-, 10-, and 100-year return period and 1- and 6-h-duration storms under various climate scenarios. The effectiveness of PP and BCs varied non-linearly with the extent of PP and BCs adopted. In general, the fluctuation of hydrological performance of PP is greater than that of BCs in RCP2.6 and RCP8.5 (e.g., peak flow reductions range from -60% to 69% and from -22% to 9%, for 5% area of PP and BCs, respectively). And PP is more cost-effective for frequent storms using life cycle costing analysis. We find that PP and BCs could significantly reduce runoff volume and peak discharge in response to rainfall events with short return period, but not for heavy storms with longer return period.


Subject(s)
Rain , Water Movements , Climate Change , Hydrology , Porosity
7.
Sci Rep ; 8(1): 1155, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348452

ABSTRACT

The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Biofilms/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metalloendopeptidases/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Drug Combinations , Drug Synergism , Ligases/antagonists & inhibitors , Ligases/genetics , Ligases/metabolism , Metalloendopeptidases/biosynthesis , Metalloendopeptidases/genetics , Microbial Sensitivity Tests , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyrimidinones/pharmacology , Quorum Sensing/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Triazoles/pharmacology
8.
Environ Sci Pollut Res Int ; 25(5): 4289-4302, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29181749

ABSTRACT

In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96 ± 0.28 and 8.36 ± 0.89 mg/L, respectively. After membrane filtration, these values decreased to 2.9 ± 0.2 and 2.8 ± 0.2 mg/L, respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal molecular weight (MW) distribution of DOMs, and that the intensities of all the peaks were reduced in the MBR effluent compared to the influent. Three-dimensional fluorescence excitation emission matrix (FEEM) indicated that fulvic and humic acid-like substances were the predominant DOMs in biological treatment processes. Precise identification and characterization of low-MW DOMs was carried out using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11), and aromatics (7) were the main compounds detected. DOMs exhibited both biodegradable and recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the treatment process train in terms of numbers, concentrations, molecular weight, biodegradability, and recalcitrance.


Subject(s)
Bioreactors , Membranes, Artificial , Organic Chemicals/chemistry , Chromatography, Gel , Fluorescence , Humic Substances/analysis , Spectrometry, Fluorescence/methods , Waste Disposal, Fluid/methods
9.
Article in English | MEDLINE | ID: mdl-28841359

ABSTRACT

Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO4). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH4+ N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.


Subject(s)
Metal Nanoparticles/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Zinc Oxide/analysis , Zinc/analysis , Adsorption , Biological Oxygen Demand Analysis , Ions , Metal Nanoparticles/toxicity , Microbial Viability/drug effects , Particle Size , Sewage/microbiology , Surface Properties , Water Pollutants, Chemical/toxicity , Zinc Oxide/toxicity
10.
J Environ Sci (China) ; 57: 293-311, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647250

ABSTRACT

Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate.


Subject(s)
Environmental Restoration and Remediation/methods , Waste Disposal, Fluid/methods , Wastewater , Wetlands , Cold Climate
11.
Article in English | MEDLINE | ID: mdl-28276890

ABSTRACT

Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO4). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH4-N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu2+ indicated the loss of cell viability in sludge flocs.


Subject(s)
Copper/analysis , Nanoparticles/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Biological Oxygen Demand Analysis , Copper/chemistry , Ions , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
12.
Water Res ; 102: 594-606, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27479293

ABSTRACT

This study investigated the behaviour and characteristics of soluble microbial products (SMP) in two anoxic-aerobic membrane bioreactors (MBRs): MBRcontrol and MBRpharma, for treating municipal wastewater. Both protein and polysaccharides measured exhibited higher concentrations in the MBRpharma than the MBRcontrol. Molecular weight (MW) distribution analysis revealed that the presence of pharmaceuticals enhanced the accumulation of SMPs with macro- (13,091 kDa and 1587 kDa) and intermediate-MW (189 kDa) compounds in the anoxic MBRpharma, while a substantial decrease was observed in both MBR effluents. Excitation emission matrix (EEM) fluorescence contours indicated that the exposure to pharmaceuticals seemed to stimulate the production of aromatic proteins containing tyrosine (10.1-32.6%) and tryptophan (14.7-43.1%), compared to MBRcontrol (9.9-29.1% for tyrosine; 11.8-42.5% for tryptophan). Gas chromatography-mass spectrometry (GC-MS) analysis revealed aromatics, long-chain alkanes and esters were the predominant SMPs in the MBRs. More peaks were present in the aerobic MBRpharma (196) than anoxic MBRpharma (133). The SMPs identified exhibited both biodegradability and recalcitrance in the MBR treatment processes. Only 8 compounds in the MBRpharma were the same as in the MBRcontrol. Alkanes were the most dominant SMPs (51%) in the MBRcontrol, while aromatics were dominant (40%) in the MBRpharma. A significant decrease in aromatics (from 16 to 7) in the MBRpharma permeate was observed, compared to the aerobic MBRpharma. Approximately 21% of compounds in the aerobic MBRcontrol were rejected by membrane filtration, while this increased to 28% in the MBRpharma.


Subject(s)
Waste Disposal, Fluid , Wastewater , Bioreactors , Gas Chromatography-Mass Spectrometry , Membranes, Artificial
13.
Water Res ; 102: 294-304, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27372652

ABSTRACT

Widespread occurrence of trace pharmaceutical residues in aquatic environments is of great concerns due to the potential chronic toxicity of certain pharmaceuticals including ibuprofen on aquatic organisms even at environmental levels. In this study, the phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia were investigated in a horizontal subsurface flow constructed wetland system. The experimental wetland system consisted of a planted bed with Typha angustifolia and an unplanted bed (control) to treat ibuprofen-loaded wastewater (∼107.2 µg L(-1)). Over a period of 342 days, ibuprofen was accumulated in leaf sheath and lamina tissues at a mean concentration of 160.7 ng g(-1), indicating the occurrence of the phytoextraction of ibuprofen. Root-uptake ibuprofen was partially transformed to ibuprofen carboxylic acid, 2-hydroxy ibuprofen and 1-hydroxy ibuprofen which were found to be 1374.9, 235.6 and 301.5 ng g(-1) in the sheath, respectively, while they were 1051.1, 693.6 and 178.7 ng g(-1) in the lamina. The findings from pyrosequencing analysis of the rhizosphere bacteria suggest that the Dechloromonas sp., the Clostridium sp. (e.g. Clostridium saccharobutylicum), the order Sphingobacteriales, and the Cytophaga sp. in the order Cytophagales were most probably responsible for the rhizodegradation of ibuprofen.


Subject(s)
Typhaceae/metabolism , Wetlands , Ibuprofen , Rhizosphere , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
14.
Environ Sci Pollut Res Int ; 23(14): 14526-39, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27068910

ABSTRACT

A 454 high-throughput pyrosequencing approach was used to characterize the structures of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater at a concentration of 250 µg L(-1). The removal efficiencies of caffeine in the planted beds (93.0 %) were significantly (p < 0.05) higher than those in the unplanted beds (81.4 %). Bacterial diversity was decreased by 25 and 22.4 %, respectively, in both planted and unplanted mesocosms after 210-day operation. The results of taxonomic analyses suggested that chronic exposure of wetland ecosystems to caffeine could lead to moderate shifts in microbial community composition. In total, 2156 operational taxonomic units (OTUs) were generated and 20 phyla comprising 260 genera were identified. The major phylogenetic groups at phylum level included Firmicutes (39 %), Actinobacteria (25.1 %), Proteobacteria (17.1 %), Synergistetes (5.6 %), and Chloroflexi (5.5 %). Bacilli and Synergistia increased in abundance in the planted mesocosms, while for the unplanted mesocosms, Actinobacterial, Clostridia and Betaproteobacteria exhibited increased proportion under the exposure of caffeine. At genus level, Propionibacterium, Staphylococcus, Bacillus, and Streptococcus were found to be increased in abundance after caffeine treatment. As for the response of fungal community to caffeine enrichment, genus like Cladosporium, Emericellopsis, Aspergillus, and Phoma were found to be resistant to caffeine disturbance. When compared to the microbial community between planted and unplanted mesocosms, a distinct community profile for both bacteria and fungi community was observed. The presence of plants had a remarkable effect on the structure of microbial community, helping buffer against the stress associated with caffeine exposure.


Subject(s)
Bacteria/genetics , Caffeine/analysis , Wastewater/chemistry , Wetlands , Fungi/genetics , Phylogeny , Plants/microbiology
15.
Sci Total Environ ; 562: 604-613, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27110975

ABSTRACT

The potential toxicity of pharmaceutical residues including ibuprofen on the aquatic vertebrates and invertebrates has attracted growing attention to the pharmaceutical pollution control using constructed wetlands, but there lacks of an insight into the relevant microbial degradation mechanisms. This study investigated the bacteria associated with the cometabolic and metabolic degradation of ibuprofen in a horizontal subsurface flow constructed wetland system by high-throughput pyrosequencing analysis. The ibuprofen degradation dynamics, bacterial diversity and evenness, and bacterial community structure in a planted bed with Typha angustifolia and an unplanted bed (control) were compared. The results showed that the plants promoted the microbial degradation of ibuprofen, especially at the downstream zones of wetland. However, at the upstream one-third zone of wetland, the presence of plants did not significantly enhance ibuprofen degradation, probably due to the much greater contribution of cometabolic behaviors of certain non-ibuprofen-degrading microorganisms than that of the plants. By analyzing bacterial characteristics, we found that: (1) The aerobic species of family Flavobacteriaceae, family Methylococcaceae and genus Methylocystis, and the anaerobic species of family Spirochaetaceae and genus Clostridium_sensu_stricto were the most possible bacteria relevant to the cometabolic degradation of ibuprofen; (2) The family Rhodocyclaceae and the genus Ignavibacterium closely related to the plants appeared to be associated with the metabolic degradation of ibuprofen.


Subject(s)
Bacteria/genetics , Biodegradation, Environmental , Ibuprofen/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Bacteria/classification , Bacteria/metabolism , Wetlands
16.
Environ Technol ; 37(12): 1467-79, 2016.
Article in English | MEDLINE | ID: mdl-26581707

ABSTRACT

The treatment performance of ibuprofen (IBP)-enriched wastewater by horizontal subsurface flow constructed wetlands planted with cattail (Typha angustifolia) and unplanted control mesocosms was investigated. Removal efficiencies of IBP were significantly (p < .05) enhanced in the planted mesocosms (78.5%) compared to those in the unplanted beds (57.9%). An 18S rRNA gene high-throughput pyrosequencing approach was used to investigate the effects of IBP on the structure of the fungal community in these wetland systems. The overall diversity of the fungal community was reduced under the IBP exposure. Taxonomic analysis revealed that 62.2% of the fungal sequences were affiliated with Basidiomycota, followed by Ascomycota (37.4%) at the phylum level. Uncultured fungus (48.2%), Chaetomium sp. (14.2%), Aspergillus sp. (12.4%), Trichoderma sp. (5.7%), Cladosporium sp. (5.4%), and Emericellopsis sp. (5.2%) were identified as dominant genera. At the genus level, a distinct profile of the fungal community in the IBP-enriched mesocosms was observed as compared to the control beds, and as well specific fungal genera were enhanced in the planted beds, regardless of IBP enrichment. However, despite these differences, the composition of the fungal community (as measured by Bray-Curtis similarity) was mostly unaffected by the significant IBP enrichment. On the other hand, a consistent similarity pattern of fungal community structure in the planted mesocosms suggests that the presence of higher macrophytes in the wetland systems may well help shape the fungal community structure.


Subject(s)
Fungi/physiology , Ibuprofen/isolation & purification , Microbial Consortia/physiology , Water Purification/instrumentation , Wetlands , Equipment Design , Ibuprofen/chemistry , Models, Biological , Wastewater/chemistry , Wastewater/microbiology , Water Movements , Water Purification/methods
17.
J Environ Sci (China) ; 30: 30-46, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25872707

ABSTRACT

Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems.


Subject(s)
Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Water Purification/methods , Wetlands , Biodegradation, Environmental , Tropical Climate
18.
Chemosphere ; 120: 211-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25063888

ABSTRACT

The rapid development of nanotechnology will inevitably result in an increasing release of engineered nanoparticles (NPs) to wastewaters. In this study we investigated the fate and toxicity of ZnO NPs in aquatic plant mesocosms, as well as the potential for root accumulation and root-to-shoot translocation of these Zn NPs in the wetland plant Schoenoplectus tabernaemontani exposed to ZnO NPs. The growth of S. tabernaemontani in these hydroponic mesocosms was significantly inhibited by ZnO NPs (1000 mg L(-1)) compared to a control. Levels of Zn in the plant roots for the ZnO NP treatment ranged from 402 to 36513 µg g(-1), while values ranged from 256 to 9429 µg g(-)(1) (dry weight) for Zn(2+) treatment, implying that the uptake of Zn from ZnO NPs was substantially greater than that for Zn(2+). The root uptake (of the initial mass of Zn in the solution) for ZnO NP treatment ranged from 8.6% to 43.5%, while for Zn(2+) treatment they were 1.66% to 17.44%. The low values of the translocation factor for both ZnO NP (0.001-0.05) and Zn(2+) (0.05-0.27) treatments implied that the potential for translocation of Zn NPs from roots to shoots was limited. ZnO NP distribution in the root tissues of S. tabernaemontani was confirmed by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) demonstrated that ZnO NPs could pass through plant cell walls, and were present within the plant cells of S. tabernaemontani.


Subject(s)
Cyperaceae/drug effects , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Cyperaceae/growth & development , Cyperaceae/metabolism , Dose-Response Relationship, Drug , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/ultrastructure , Zinc Oxide/metabolism
19.
J Environ Manage ; 141: 116-31, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24784754

ABSTRACT

Inadequate access to clean water and sanitation has become one of the most pervasive problems afflicting people throughout the developing world. Replication of centralized water-, energy- and cost-intensive technologies has proved ineffective in resolving the complex water-related problems resulting from rapid urbanization in the developing countries. Instead constructed wetlands (CWs) have emerged and become a viable option for wastewater treatment, and are currently being recognized as attractive alternatives to conventional wastewater treatment methods. The primary objective of this review is to present a comprehensive overview of the diverse range of practice, applications and researches of CW systems for removing various contaminants from wastewater in developing countries, placing them in the overall context of the need for low-cost and sustainable wastewater treatment systems. Emphasis of this review is placed on the treatment performance of various types of CWs including: (i) free water surface flow CW; (ii) subsurface flow CW; (iii) hybrid systems; and, (iv) floating treatment wetland. The impacts of different wetland design and pertinent operational variables (e.g., hydraulic loading rate, vegetation species, physical configurations, and seasonal variation) on contaminant removal in CW systems are also summarized and highlighted. Finally, the cost and land requirements for CW systems are critically evaluated.


Subject(s)
Developing Countries , Waste Disposal, Fluid/methods , Wetlands , Costs and Cost Analysis , Waste Disposal, Fluid/economics
20.
Comput Methods Programs Biomed ; 113(2): 474-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24332277

ABSTRACT

Intraventricular flow is important in understanding left ventricular function; however, relevant numerical simulations are limited, especially when heart valve function is taken into account. In this study, intraventricular flow in a patient-specific left ventricle has been modelled in two-dimension (2D) with both mitral and aortic valves integrated. The arbitrary Lagrangian-Eulerian (ALE) approach was employed to handle the large mesh deformation induced by the beating ventricular wall and moving leaflets. Ventricular wall deformation was predefined based on MRI data, while leaflet dynamics were predicted numerically by fluid-structure interaction (FSI). Comparisons of simulation results with in vitro and in vivo measurements reported in the literature demonstrated that numerical method in combination with MRI was able to predict qualitatively the patient-specific intraventricular flow. To the best of our knowledge, we are the first to simulate patient-specific ventricular flow taking into account both mitral and aortic valves.


Subject(s)
Aortic Valve/anatomy & histology , Heart Ventricles/anatomy & histology , Mitral Valve/anatomy & histology , Models, Anatomic , Models, Statistical , Humans , Magnetic Resonance Imaging , Mitral Valve Insufficiency/physiopathology , Systole
SELECTION OF CITATIONS
SEARCH DETAIL