Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108929, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002304

ABSTRACT

Spatholobus suberectus Dunn (Leguminosae) has been used for medicinal purposes for a long period. Flavonoids are the major bioactive components of S. suberectus. However, there is still limited knowledge of the exact method via which transcription factors (TFs) regulate flavonoid biosynthesis. The full-length transcriptome of S. suberectus was analyzed using SMRT sequencing; 61,548 transcripts were identified, including 12,311 new gene loci, 53,336 novel transcripts, 44,636 simple sequence repeats, 36,414 complete coding sequences, 871 long non-coding RNAs and 6781 TFs. The SsMYB158 TF, which is associated with flavonoid biosynthesis, belongs to the R2R3-MYB class and is localized subcellularly to the nucleus. The overexpression of SsMYB158 in Nicotiana benthamiana and the transient overexpression of SsMYB158 in S. suberectus resulted in a substantial enhancement in both flavonoids and catechin levels. In addition, there was a remarkable upregulation in the expression of essential enzyme-coding genes associated with the flavonoid biosynthesis pathways. Our study revealed SsMYB158 as a critical regulator of flavonoid biosynthesis in S. suberectus and laying the foundation for its molecular breeding.


Subject(s)
Fabaceae , Flavonoids , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Transcriptome , Flavonoids/biosynthesis , Flavonoids/metabolism , Flavonoids/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Fabaceae/genetics , Fabaceae/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Genes, Plant
2.
J Ethnopharmacol ; 333: 118414, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38830451

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular Carcinoma (HCC) is an aggressive killer worldwide with high incidence and mortality. The herb Chloranthus fortunei (A. Gray) Solms-Laub is known as "Si Ji Feng" and is classified as a Feng-type medicine in classic Yao medicines. According to Yao's medical beliefs, Chloranthus fortunei has the functions of dispelling Feng, regulating qi, detoxifying, promoting blood circulation, etc. Folk uses its decoctions to treat stagnant liver conditions, such as liver abscesses, cirrhosis, hepatitis, and liver cancer. However, the bioactivity and mechanisms of Chloranthus fortunei extract against HCC have not been reported. AIM OF THE STUDY: To investigate the anti-HCC bioactivity and potential mechanism of the extract of Chloranthus fortunei (CFS). MATERIALS AND METHODS: Using 70% ethanol for reflux extraction of CFS resulted in the CFS ethanol extract, followed by sequential extractions with petroleum ether, chloroform, ethyl acetate, and n-butanol, yielding four fractions. The CCK-8 assay was utilized to examine the cytotoxic effects of 4 fractions on MHCC97-H and HepG2 cells, exploring the most effective component, namely petroleum ether extracts of CFS (PECFS). The major active ingredients of PECFS were identified using LC/MS technology, and the impact on cell proliferation and apoptosis in HCC cells was studied. The key genes and proteins in the pathway were validated using RT-PCR and Western blotting. BALB/c nude mice were chosen for tumor xenotransplantation and PECFS therapy. hinders the proliferation of HCC cells and promotes apoptosis. RESULTS: Among the four fractions, it was found that PECFS have the highest antiproliferative activity against MHCC97-H and HepG2 cells (IC50 = 13.86, 10.55 µg/mL), with sesquiterpene compounds being the primary active constituents. The antiproliferative activity of PECFS on HCC cells was linked to the inhibition of cell cloning, invasion, and metastasis abilities, as well as the arrest of the cell cycle at the G2/M phase. Additionally, exerts pro-apoptotic effects on HCC cells by upregulating the pro-apoptotic protein Bax, downregulating the anti-apoptotic protein Bcl-2, and activating the expression of the Caspase family. Moreover, protein and m-RNA expression data showed that PECFS inhibits HCC cell proliferation and promotes apoptosis by regulating the PI3K/AKT/mTOR pathway. Besides, after PECFS treatment, tumor growth in nude mice was suppressed. CONCLUSION: PECFS can inhibit the viability of HCC cells by acting on the PI3K/AKT/mTOR pathway, demonstrating anti-tumor potential. This study's findings suggest that PECFS may represent a promising source of novel agents for liver cancer treatment, providing scientific evidence for the traditional application of CFS in treating HCC.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Mice, Inbred BALB C , Mice, Nude , Plant Extracts , Animals , Humans , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Mice , Hep G2 Cells , Alkanes/chemistry , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Male
SELECTION OF CITATIONS
SEARCH DETAIL