Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Cell Biochem Funct ; 42(2): e3977, 2024 Mar.
Article En | MEDLINE | ID: mdl-38494660

Langerhans cells (LCs) play a critical role in skin immune responses and the development of psoriasis. Yinxieling (YXL) is a representative Chinese herbal medicine for the treatment of psoriasis in South China. It was found to improve psoriasis without obvious side effects in the clinic. Here we attempted to clarify whether and how YXL regulates the differentiation and functions of LCs in Imiquimod (IMQ)-induced psoriasis in vivo and induced LCs in vitro. The Psoriasis Area Severity Index (PASI) score was used to evaluate the efficacy of YXL for IMQ-induced psoriasis-like mice. Flow cytometry was utilized to analyze the effects of YXL, to regulate the differentiation, migration, maturation, and antigen presentation of LCs. The results show that YXL significantly alleviated skin inflammation, as reduced in PASI score and classic psoriasis characteristics in pathological sections. Although there was no effect on the proportion of total DCs in the skin-draining lymph nodes, the expression of epidermal LCs and its transcription factor PU.1 were both markedly inhibited. LCs were also prevented from migrating from epidermal to skin-draining lymph nodes and mature. In addition, the number of LCs carrying antigens in the epidermis increased, which suggested that YXL could effectively prevent LCs from presenting antigens. In vitro, YXL had a significant impact on inhibiting the differentiation of LCs. Further data showed that YXL decreased the relative expression of transforming growth factor-ß (TGFß) messenger RNA (mRNA) and interleukin-23 (IL-23) mRNAs. Thus, YXL alleviates psoriasis by regulating differentiation, migration, maturation, and antigen presentation via the TGFß/PU.1/IL-23 signal axis.


Langerhans Cells , Psoriasis , Animals , Mice , Interleukin-23 , Transforming Growth Factor beta1 , Psoriasis/chemically induced , Psoriasis/drug therapy , Transforming Growth Factor beta , RNA, Messenger
2.
J Nat Med ; 77(4): 712-720, 2023 Sep.
Article En | MEDLINE | ID: mdl-37306932

Psoriasis is a chronic inflammatory skin disorder characterized by abnormal keratinocytes proliferation and multiple immune cells infiltration in the dermis and epidermis. Although most psoriasis-related researches have been concentrated on the interleukin-23 (IL-23)/interleukin-17 (IL-17) axis, new data suggest that keratinocytes also play a pivotal role in psoriasis. Previously, we found that punicalagin (PUN), a bioactive ellagitannin extracted from Pericarpium Granati (the pericarpium of Punica granatum L.), exerts a therapeutic effect on psoriasis. However, the underlying mechanism, especially its potential modulatory effect on keratinocytes, remains obscure. Our study aims to reveal the potential regulatory effect and its underlying cellular mechanism of PUN on the hyperproliferation of keratinocytes. We used tumor necrosis factor α (TNF-α), IL-17A and interleukin-6 (IL-6) to induce abnormal proliferation of HaCaT cells (Human Keratinocytes Cells) in vitro. Then, we evaluated the effects of PUN through MTT assay, EdU staining and cell cycle detection. Finally, we explored the underlying cellular mechanisms of PUN via RNA-sequencing, WB in vitro and in vivo. Here, we found that PUN can directly and dose-dependently decrease TNF-α, IL-17A and IL-6-induced abnormal proliferation of HaCaT cells in vitro. Mechanically, PUN suppresses the hyperproliferation of keratinocytes through repressing S-phase kinase-associated protein 2 (SKP2) expression in vitro and in vivo. Moreover, overexpression of SKP2 can partly abolish PUN-mediated inhibition of aberrantly proliferative keratinocytes. These results illustrate that PUN can reduce the severity of psoriasis through directly repressing SKP2-mediated abnormal proliferation of keratinocytes, which gives new insight into the therapeutic mechanism of PUN on psoriasis. Moreover, these findings imply that PUN might be a promising drug candidate for the treatment of psoriasis.


Hydrolyzable Tannins , Psoriasis , Humans , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , Interleukin-17/metabolism , Interleukin-17/pharmacology , Interleukin-17/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Keratinocytes , Psoriasis/drug therapy , Psoriasis/pathology , Cell Proliferation
3.
Cell Prolif ; 56(10): e13450, 2023 Oct.
Article En | MEDLINE | ID: mdl-36938980

The global pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an once-in-a-lifetime public health crisis. Among hundreds of millions of people who have contracted with or are being infected with COVID-19, the question of whether COVID-19 infection may cause long-term health concern, even being completely recovered from the disease clinically, especially immune system damage, needs to be addressed. Here, we performed seven-chain adaptome immune repertoire analyses on convalescent COVID-19 patients who have been discharged from hospitals for at least 6 months. Surprisingly, we discovered lymphopenia, reduced number of unique CDR3s, and reduced diversity of the TCR/BCR immune repertoire in convalescent COVID-19 patients. In addition, the BCR repertoire appears to be activated, which is consistent with the protective antibody titres, but serological experiments reveal significantly lower IL-4 and IL-7 levels in convalescent patients compared to those in healthy controls. Finally, in comparison with convalescent patients who did not receive post-hospitalization rehabilitation, the convalescent patients who received post-hospitalization rehabilitation had attenuated immune repertoire abnormality, almost back to the level of healthy control, despite no detectable clinic demographic difference. Overall, we report the potential long-term immunological impairment for COVID-19 infection, and correction of this impairment via post-hospitalization rehabilitation may offer a new prospect for COVID-19 recovery strategy.


COVID-19 , Humans , SARS-CoV-2 , Immunization, Passive/methods , Patients , Hospitalization
4.
J Ethnopharmacol ; 307: 116091, 2023 May 10.
Article En | MEDLINE | ID: mdl-36592823

ETHNOPHARMACOLOGICAL RELEVANCE: Qidan Tiaozhi capsule (QD), a traditional Chinese medicine, has been used to treat metabolic syndrome for over a decade. However, the mechanism of QD in the treatment of metabolic syndrome is still unknown. AIM OF THE STUDY: Growing studies demonstrate that impaired mitophagy is one of the important causes of metabolic syndrome. Thus, this research aims to investigate the mechanism of mitophagy in the QD treatment of metabolic syndrome. MATERIALS AND METHODS: Network pharmacology and molecular docking were used to probe the mechanism of QD treatment of metabolic syndrome. In an oleic acid-induced cell model, glucose consumption and uptake capacity, triglyceride (TG), total cholesterol (TC), malonaldehyde (MDA), superoxide dismutase (SOD) and ROS levels, and mitochondrial membrane potential (MMP) were examined. mRFP-GFP-LC3 adenovirus and GFP-LC3 lentivirus were used to examine the effect of QD on mitophagy. The IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were also determined. What's more, the PINK1 gene was silenced to verify the above findings. In a high-fat diet-fed mouse model, body weight, organ indexes, OGTT, ITT, HOMA-IR, insulin sensitivity, serum MDA, SOD, TC, TG, LDL-C and HDL-C, hepatic TC, TG, LDL-C and HDL-C levels, hepatic steatosis, and IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were investigated. RESULTS: Results from network pharmacology and molecular docking suggested that QD might suppress oxidative stress to improve metabolic syndrome. In an oleic acid-induced cell model, compared with the model group, enhanced glucose consumption and uptake ability, inhibited intracellular lipid accumulation, TC, TG, MDA and ROS levels, and increased SOD level and MMP were found in QD groups. And mitophagy levels, IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were promoted. Interestingly, PINK1 silencing reversed the therapeutic action of QD on oleic acid-induced cells. In high-fat diet-fed mice, inhibited body weight, abdominal fat indexes, liver indexes, HOMA-IR, serum and hepatic TC, TG and LDL-C, serum MDA and hepatic steatosis, and increased insulin sensitivity, serum and hepatic HDL-C, serum SOD, and activated IRS2-PI3K and AMPK/PINK1-Parkin signal pathways were found in QD groups. CONCLUSION: QD activates AMPK/PINK1-Parkin-mediated mitophagy to suppress oxidative stress to treat metabolic syndrome.


Drugs, Chinese Herbal , Fatty Liver , Insulin Resistance , Metabolic Syndrome , Mitophagy , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Cholesterol, LDL , Metabolic Syndrome/drug therapy , Mitophagy/drug effects , Molecular Docking Simulation , Oleic Acid/pharmacology , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species/metabolism , Triglycerides , Ubiquitin-Protein Ligases/metabolism , Drugs, Chinese Herbal/pharmacology
5.
Front Vet Sci ; 9: 1009182, 2022.
Article En | MEDLINE | ID: mdl-36452142

Numerous studies have highlighted the role of miRNA in the deformation and necrosis of cells of ovarian tissue caused by heat stress (HS), which ultimately affects ovarian function. Although the role of small RNAs has been investigated in alterations in ovarian tissue functioning in response to HS, the expression profile of ovarian miRNA has been explored to a lesser extent. In this study, female rabbits were subject to HS treatment by using electrical heater. The current work demonstrated that HS could significantly change physiological performance of female rabbits including body weight, rectal temperature and relative ovary weight, and significantly reduce serum IL-2, IL-8, CAT, and GSH-Px concentrations by enzyme-linked immunosorbent assay (ELISA) technique. As a result, an increase in apoptosis in ovarian cells, as well as unhealthy follicles, were observed by Hematoxylin-eosin (HE) and TUNEL staining. Additionally, small RNA-seq revealed changes in the miRNA expression profile of rabbit ovaries under HS. Five hundred fourteen miRNAs were obtained including known miRNAs 442 and novel miRNAs 72. Among these miRNAs, 23 miRNAs were significantly expressed under HS. Eleven differentially expressed miRNAs (DE miRNAs) and 9 their predicted targets were confirmed by qPCR, which were expected miRNA-mRNA negative regulation pattern. Among the DE miRNAs and targets, miR-141-39 may target COQ6, miR-449a-5p and miR-34c-5p may control RFC5 and RTN2 together, miR-449a-5p may target ACADVL, miR-34c-5p potentially targets Bcl-2 and miR-196b-5p potentially regulates CASK and HOXB6. Thus, the current work suggested the negative effects of HS on the ovarian tissue of female rabbits, and in conclusion these changes could be caused by decreased serum IL-2, IL-8, CAT and GSH-Px levels, increased ovarian apoptosis, and changed the expression of miRNAs.

6.
Front Microbiol ; 13: 813622, 2022.
Article En | MEDLINE | ID: mdl-35495670

Heat stress can have an impact on parental gamete maturation and reproduction functions. According to current research, the microbial composition of the vaginal cavity is species specific. Pregnancy, menstruation, and genital diseases have been linked to the dynamics of vaginal ecology. In this study, we characterized the vaginal microbiota and metabolites after heat stress. At the phylum level, the rabbit's vaginal microbial composition of rabbit showed high similarity with that of humans. In the Heat group, the relative abundance of the dominant microbiota Actinobacteria, Bacteroidetes, and Proteobacteria increased, while the relative abundance of Firmicutes decreased. Furthermore, heat stress significantly increased the relative abundance of W5053, Helcococcus, Thiopseudomonas, ldiomaarina, atopostipes, and facklamia, whereas the relative abundance of 12 genera significantly decreased, including Streptococcus, UCG-005, Alistipes, [Eubacterium]_xylanophilum_group, Comamonas, RB41, Fastidiosipila, Intestinimonas, Arthrobacter, Lactobacillus, Leucobacter, and Family_xlll_AD3011_group. Besides, the relative concentrations of 158 metabolites differed significantly between the Heat and Control groups. Among them, the endocrine hormone estradiol (E2) increased in the Heat group and was positively associated with a number of metabolites such as linolelaidic acid (C18:2N6T), N-acetylsphingosine, N-oleoyl glycine, trans-petroselinic acid, syringic acid, 2-(1-adamantyl)-1-morpholinoethan-1-one, 5-OxoETE, and 16-heptadecyne-1,2,4-triol. Further, the majority of the differential metabolites were enriched in steroid biosynthesis and endocrine and other factor-regulated calcium reabsorption pathways, reflecting that heat stress may affect calcium metabolism, hormone-induced signaling, and endocrine balance of vaginal ecology. These findings provide a comprehensive depiction of rabbit vaginal ecology and reveal the effects of heat stress on the vagina via the analysis of vaginal microbiome and metabolome, which may provide a new thought for low female fertility under heat stress.

7.
Angew Chem Int Ed Engl ; 61(26): e202202654, 2022 Jun 27.
Article En | MEDLINE | ID: mdl-35394704

Herein we report an efficient and recyclable catalytic system for tandem CO2 capture and N-formylation to value-added chemicals. CO2 is apt to be captured by morpholine solution, while a highly efficient heterogeneous catalyst, isolated iridium atoms supported over nanadiamond/graphene, is discovered to be highly reactive for the formylation of morpholine, leading to the formation of N-formylmorpholine with excellent productivity (with a turnover number of 5 120 000 in a single batch reaction) and selectivity (>99 %). In addition, the CO2 captured by morpholine under atmospheric conditions can be converted to N-formylmorpholine with decent conversion (51 %), which realizes the integration of CO2 capture and conversion to value-added chemicals.

8.
Front Pharmacol ; 13: 817526, 2022.
Article En | MEDLINE | ID: mdl-35153790

Psoriasis is a chronic and inflammatory skin disorder characterized by inflammation and epidermal hyperplasia. Punicalagin (PUN) is a main active ingredient of pomegranate (Punica granatum L.) peel with multiple biological activities, such as antibacterial, antioxidant and anti-tumor effects. However, the potential effect of PUN on psoriasis remains unknown. In this study, we want to investigate the pharmacological effect of PUN on psoriasis by using imiquimod (IMQ)-induced psoriatic mice model in vivo and tumor necrosis factor a (TNF-α) and interleukin-17A (IL-17A)-stimulated HaCaT cells in vitro. Our results showed that PUN can effectively alleviate the severity of psoriasis-like symptoms. Mechanistically, PUN potently suppresses the aberrant upregulation of interleukin-1ß (IL-1ß) and subsequent IL-1ß-mediated inflammatory cascade in keratinocytes by inhibiting the nuclear factor kappa B (NF-κB) activation and cleaved caspase-1 expression in vitro and in vivo. Taken together, our findings indicate that PUN can relieve psoriasis by repressing NF-κB-mediated IL-1ß transcription and caspase-1-regulated IL-1ß secretion, which provide evidence that PUN might represent a novel and promising candidate for the treatment of psoriasis.

9.
Animals (Basel) ; 11(12)2021 Dec 19.
Article En | MEDLINE | ID: mdl-34944367

The control of pre-implantation development in mammals undergoes a maternal-to-zygotic transition (MZT) after fertilization. The transition involves maternal clearance and zygotic genome activation remodeling the terminal differentiated gamete to confer totipotency. In the study, we first determined the profile of long non-coding RNAs (lncRNAs) of mature rabbit oocyte, 2-cell, 4-cell, 8-cell, and morula embryos using RNA-seq. A total of 2673 known rabbit lncRNAs were identified. The lncRNAs exhibited dynamic expression patterns during pre-implantation development. Moreover, 107 differentially expressed lncRNAs (DE lncRNAs) were detected between mature oocyte and 2-cell embryo, while 419 DE lncRNAs were detected between 8-cell embryo and morula, consistent with the occurrence of minor and major zygotic genome activation (ZGA) wave of rabbit pre-implanted embryo. This study then predicted the potential target genes of DE lncRNAs based on the trans-regulation mechanism of lncRNAs. The GO and KEGG analyses showed that lncRNAs with stage-specific expression patterns promoted embryo cleavage and synchronic development by regulating gene transcription and translation, intracellular metabolism and organelle organization, and intercellular signaling transduction. The correlation analysis between mRNAs and lncRNAs identified that lncRNAs ENSOCUG00000034943 and ENSOCUG00000036338 may play a vital role in the late-period pre-implantation development by regulating ILF2 gene. This study also found that the sequential degradation of maternal lncRNAs occurred through maternal and zygotic pathways. Furthermore, the function analysis of the late-degraded lncRNAs suggested that these lncRNAs may play a role in the mRNA degradation in embryos via mRNA surveillance pathway. Therefore, this work provides a global view of known lncRNAs in rabbit pre-implantation development and highlights the role of lncRNAs in embryogenesis regulation.

10.
Cell Prolif ; 54(11): e13137, 2021 Nov.
Article En | MEDLINE | ID: mdl-34590363

Pyroptosis, which is characterized by gasdermin family protein-mediated pore formation, cellular lysis and the release of pro-inflammatory cytokines, is a form of programmed cell death associated with intracellular pathogens-induced infection. However, emerging evidence indicates that pyroptosis also contributes to sterile inflammation. In this review, we will first illustrate the biological process of pyroptosis. Then, we will focus on the pathogenic effects of pyroptosis on multiple noninfectious disorders. At last, we will characterize several specific pyroptotic inhibitors targeting the pyroptotic signalling pathway. These data demonstrate that pyroptosis plays a prominent role in sterile diseases, thereby providing a promising approach to the treatment of noninfective inflammatory disorders.


Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Pyroptosis/drug effects , Pyroptosis/physiology , Cell Death/drug effects , Cell Death/physiology , Humans , Inflammasomes/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Noncommunicable Diseases/drug therapy
11.
Front Cell Dev Biol ; 9: 686820, 2021.
Article En | MEDLINE | ID: mdl-34414181

Metabolic disorders include metabolic syndrome, obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular diseases. Due to unhealthy lifestyles such as high-calorie diet, sedentary and physical inactivity, the prevalence of metabolic disorders poses a huge challenge to global human health, which is the leading cause of global human death. Mitochondrion is the major site of adenosine triphosphate synthesis, fatty acid ß-oxidation and ROS production. Accumulating evidence suggests that mitochondrial dysfunction-related oxidative stress and inflammation is involved in the development of metabolic disorders. Mitophagy, a catabolic process, selectively degrades damaged or superfluous mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial function. It is considered to be one of the major mechanisms responsible for mitochondrial quality control. Growing evidence shows that mitophagy can prevent and treat metabolic disorders through suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. In the past decade, in order to expand the range of pharmaceutical options, more and more phytochemicals have been proven to have therapeutic effects on metabolic disorders. Many of these phytochemicals have been proved to activate mitophagy to ameliorate metabolic disorders. Given the ongoing epidemic of metabolic disorders, it is of great significance to explore the contribution and underlying mechanisms of mitophagy in metabolic disorders, and to understand the effects and molecular mechanisms of phytochemicals on the treatment of metabolic disorders. Here, we investigate the mechanism of mitochondrial dysfunction in metabolic disorders and discuss the potential of targeting mitophagy with phytochemicals for the treatment of metabolic disorders, with a view to providing a direction for finding phytochemicals that target mitophagy to prevent or treat metabolic disorders.

12.
Front Pharmacol ; 12: 670151, 2021.
Article En | MEDLINE | ID: mdl-34122092

Background: Metabolic syndrome is characterized by central obesity, hyperglycemia and hyperlipidemia. Insulin resistance is the leading risk factor for metabolic syndrome. Kun-Dan decoction (KD), a traditional Chinese medicine, has been applied to treat patients with metabolic syndrome for over ten years. It is increasingly recognized that autophagy deficiency is the key cause of metabolic syndrome. Therefore, we aimed to explore whether KD can activate autophagy to improve metabolic syndrome. Methods: Network pharmacology was used to explore the underlying mechanism of KD in the treatment of metabolic syndrome. The high-fat diet-fed rats and oleic acid-induced LO2 cells were employed in our study. Oral glucose tolerance test and insulin tolerance test, obesity and histological examination, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity in high-fat diet-fed rats were analyzed. Furthermore, the protein expressions of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), phospho-AMPK, mammalian target of rapamycin (mTOR), phospho-mTOR, p62, autophagy related protein (Atg) 5, Atg7, Atg12, Atg13, Atg16L1 and microtubule-associated protein 1A/1B-light chain 3 (LC3)-Ⅱ/Ⅰ were examined in rats and LO2 cells. Moreover, autophagy activator rapamycin and inhibitor 3-methyladenine, and small interfering RNA against Atg7 were utilized to verify the role of autophagy in the treatment of metabolic syndrome by KD in oleic acid-induced LO2 cells. Results: Results from network pharmacology indicated that targeted insulin resistance might be the critical mechanism of KD in the treatment of metabolic syndrome. We found that KD significantly suppressed obesity, serum cholesterol, triglyceride and LDL-C levels and increased serum HDL-C level in high-fat diet-fed rats. Furthermore, KD enhanced insulin sensitivity and attenuated HOMA-IR in high-fat diet-fed rats. Western blot showed that KD could enhance autophagy to increase the insulin sensitivity of high-fat diet-fed rats and oleic acid-induced LO2 cells. Furthermore, 3-methyladenine and small interfering RNA against Atg7 could reverse the protective effect of KD on LO2 cells. However, rapamycin could cooperate with KD to enhance autophagic activation to increase insulin sensitivity in LO2 cells. Conclusion: The induction of autophagy may be the major mechanism for KD to improve insulin resistance and metabolic syndrome.

13.
Front Immunol ; 12: 630358, 2021.
Article En | MEDLINE | ID: mdl-33746967

N6-methyladenosine (m6A) modification, the addition of a methylation decoration at the position of N6 of adenosine, is one of the most prevalent modifications among the over 100 known chemical modifications of RNA. Numerous studies have recently characterized that RNA m6A modification functions as a critical post-transcriptional regulator of gene expression through modulating various aspects of RNA metabolism. In this review, we will illustrate the current perspectives on the biological process of m6A methylation. Then we will further summarize the vital modulatory effects of m6A modification on immunity, viral infection, and autoinflammatory disorders. Recent studies suggest that m6A decoration plays an important role in immunity, viral infection, and autoimmune diseases, thereby providing promising biomarkers and therapeutic targets for viral infection and autoimmune disorders.


Adaptive Immunity , Adenine/analogs & derivatives , Autoimmune Diseases/genetics , Immunity, Innate , RNA Processing, Post-Transcriptional , Adenine/metabolism , Dendritic Cells/physiology , Humans , Methylation , Virus Diseases/genetics
14.
Mol Immunol ; 132: 30-40, 2021 04.
Article En | MEDLINE | ID: mdl-33540227

Psoriasis is a refractory inflammatory skin disease affecting 2 %-3 % of the world population, characterized by the infiltration and hyper-proliferation of inflammatory cells and aberrant differentiation of keratinocytes. Targeting the IL-23/ Th17 axis has been well recognized as a promising therapeutic strategy, as the IL-23/ Th17 signal plays a vital role in the pathology of psoriasis. Three pentacyclic triterpene compounds isolated from loquat leaves have been reported with significant inhibitory effects on RORγt transcription activity and Th17 cell differentiation, and excellent performance in preventing lupus nephritis pathogenesis. However, the potential effects of these pentacyclic triterpene compounds on psoriasis remain unknown. In this study, we demonstrated the potent therapeutic effects of these pentacyclic triterpene compounds on psoriasis. These three pentacyclic triterpene compounds significantly alleviated skin inflammation as well as aberrant keratinocyte proliferation in an imiquimod-induced mouse psoriasis model. These compounds also inhibited the infiltration of immune cells and the level of pro-inflammatory cytokine in the dermis, as well as the cells number and changed the cytokine profiling expression of Th17 cells. These compounds could reduce the amount of CD4+ and CD8+ T cells in local lymph node, but not in spleen, which is different from hydrocortisone, the positive control treatment. These results suggest better performance of these compounds than steroids on treating psoriasis with less side effects on the integrated immune system. In summary, our findings uncover the potent therapeutic effects of pentacyclic triterpene compounds on psoriasis, providing potential candidate compounds for drug development.


Eriobotrya/chemistry , Hyperplasia/drug therapy , Inflammation/drug therapy , Pentacyclic Triterpenes/therapeutic use , Plant Leaves/chemistry , Psoriasis/drug therapy , Th17 Cells/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Disease Models, Animal , Epidermis/drug effects , Epidermis/pathology , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Imiquimod/toxicity , Inflammation/pathology , Keratinocytes/drug effects , Male , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/metabolism , Pentacyclic Triterpenes/pharmacology , Psoriasis/chemically induced , Psoriasis/immunology , Psoriasis/pathology , Th17 Cells/immunology , Th17 Cells/metabolism
15.
Front Microbiol ; 12: 817615, 2021.
Article En | MEDLINE | ID: mdl-35295680

Heat stress can impair the rabbit immune system, induce oxidative stress, and cause many complications. These diseases are characterized by metabolic disorders, but the underlying mechanism is unknown. As a result, the current research determines the effects of HS on intestinal microorganisms in rabbits and the metabolic pathway disorders caused by HS. Twelve rabbits were randomly assigned to one of two groups: CON (22-24°C) and HS (30°C-32°C). Both the groups were treated for 15 days. Blood and fecal samples were collected on day 15. Serum immune oxidation indices were determined using a commercial ELISA kit, and the microbiome of rabbit feces was studied using 16S rRNA gene sequencing. Non-targeted metabolomics was analyzed using ultra-high-performance liquid chromatography-mass spectrometry (UHPC MS/MS). The findings revealed that HS significantly increased IgG and T-AOC levels in serum, whereas it decreased TNF-α and IL-10. NMDS analysis revealed a substantial difference in bacterial community composition between HS and CON groups. At the phylum level, the abundance of Firmicutes, Protobacteria, and Verrucomicrobiota was significantly higher in the HS group, whereas the abundance of Bacteriodota was reduced in the CON group. V9D2013 group, Haloplasma, Comamonas, Clostridium sensu stricto 1, Ruminiclostridium, Syntrophus Lutispora, at the genus level Syntrophorhabdus, Paeniclostridium, Clostridium sensu stricto 6, Candidatus Caldatribacterium, Spirochaeta Synergistaceae, Syner-01, [Eubacterium] xylanophilum group, Cellulosilyticum, ADurb.Bin120, and Devosia were significantly upregulated in the HS group. The metabolism of the HS group was considerably upregulated compared with the metabolism of the CON group, according to principal component analysis (PCA) and least-squares discriminant analysis (PLS-DA). HS increased the concentrations of 4-pyridoxic acid, kynurenine, 20-OH-leukotriene B4, and dopamine and decreased the concentration of pyridoxal. In the rabbit gut, these compounds primarily impact the metabolic pathways of vitamin B6, tryptophan, neutrophil activation, and prolactin. 4-Pyridoxic acid, pyridoxal, kynurenine, 20-OH-leukotriene B4, and dopamine are essential inflammatory response markers and oxidative stress.

16.
Clin Transl Immunology ; 9(10): e1186, 2020.
Article En | MEDLINE | ID: mdl-33033617

The gasdermins, family of pore-forming proteins, are emerging key regulators of infection, autoinflammation and antitumor immunity. Multiple studies have recently characterised their crucial roles in driving pyroptosis, a lytic pro-inflammatory type of cell death. Additionally, gasdermins also act as key effectors of NETosis, secondary necrosis and apoptosis. In this review, we will address current understanding of the mechanisms of gasdermin activation and further describe the protective and detrimental roles of gasdermins in host defence and autoinflammatory diseases. These data suggest that gasdermins play a prominent role in innate immunity and autoinflammatory disorders, thereby providing potential new therapeutic avenues for the treatment of infection and autoimmune disease.

17.
Cell Prolif ; 53(1): e12698, 2020 Jan.
Article En | MEDLINE | ID: mdl-31588640

Advances in transcriptome sequencing have revealed that the genome fraction largely encodes for thousands of non-coding RNAs. Long non-coding RNAs (lncRNAs), which are a class of non-protein-coding RNAs longer than approximately 200 nucleotides in length, are emerging as key epigenetic regulators of gene expression recently. Intensive studies have characterized their crucial roles in cutaneous biology and diseases. In this review, we address the promotive or suppressive effects of lncRNAs on cutaneous physiological processes. Then, we focus on the pathogenic role of dysfunctional lncRNAs in a variety of proliferative skin diseases. These evidences suggest that lncRNAs have indispensable roles in the processes of skin biology. Additionally, lncRNAs might be promising biomarkers and therapeutic targets for cutaneous disorders.


Cell Proliferation , RNA, Long Noncoding/metabolism , Skin Diseases/metabolism , Skin/metabolism , Animals , Humans , Skin/pathology , Skin Diseases/pathology
18.
Front Pharmacol ; 10: 1193, 2019.
Article En | MEDLINE | ID: mdl-31649547

Metabolic syndrome, characterized by central obesity, hypertension, and hyperlipidemia, increases the morbidity and mortality of cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and other metabolic diseases. It is well known that insulin resistance, especially hepatic insulin resistance, is a risk factor for metabolic syndrome. Current research has shown that hepatic fatty acid accumulation can cause hepatic insulin resistance through increased gluconeogenesis, lipogenesis, chronic inflammation, oxidative stress and endoplasmic reticulum stress, and impaired insulin signal pathway. Mitochondria are the major sites of fatty acid ß-oxidation, which is the major degradation mechanism of fatty acids. Mitochondrial dysfunction has been shown to be involved in the development of hepatic fatty acid-induced hepatic insulin resistance. Mitochondrial autophagy (mitophagy), a catabolic process, selectively degrades damaged mitochondria to reverse mitochondrial dysfunction and preserve mitochondrial dynamics and function. Therefore, mitophagy can promote mitochondrial fatty acid oxidation to inhibit hepatic fatty acid accumulation and improve hepatic insulin resistance. Here, we review advances in our understanding of the relationship between mitophagy and hepatic insulin resistance. Additionally, we also highlight the potential value of mitophagy in the treatment of hepatic insulin resistance and metabolic syndrome.

19.
Int J Biol Macromol ; 137: 32-44, 2019 Sep 15.
Article En | MEDLINE | ID: mdl-31252022

Invasion and metastasis of cancerous cells affects the treatment and prognosis of hepatocellular carcinoma (HCC). HIF-1α-induced epithelial-mesenchymal transition (EMT) is a critical process associated with cancer metastasis. Basil polysaccharide (BPS), one of the major active ingredients isolated from Basil (Ocimum basilicum L.), has been identified to possess an antitumor activity for HCC. In our current study, BPS was obtained by water extraction and ethanol precipitation method and the characterization was analyzed through ultraviolet absorption spectra and Fourier-transform infrared spectrum. A CoCl2-induced hypoxia model and a HCC cell line-derived xenograft (CDX) model were used to explore the anti-metastasis efficacy and the mechanism that underlies the antitumor activity of BPS. The results showed that hypoxia could facilitate EMT and promote HCC cells migration and/or invasion. Conversely, BPS inhibited the progression and metastasis of tumor, as well as reversed EMT by causing cytoskeletal remodeling under hypoxic conditions. Moreover, BPS alleviated tumor hypoxia by targeting HIF1α, and the mesenchymal markers (ß-catenin, N-cadherin and vimentin) were down-regulated, while the epithelial markers (E-cadherin, VMP1 and ZO-1) were up-regulated after BPS treatment under hypoxic conditions. Thus, these results suggested that BPS may be a valuable option for use in clinical treatment of HCC and other malignant tumors.


Carcinoma, Hepatocellular/pathology , Disease Progression , Epithelial-Mesenchymal Transition/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/pathology , Ocimum basilicum/chemistry , Polysaccharides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cadherins/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Membrane Proteins/metabolism , Mice , Neoplasm Metastasis , Vimentin/metabolism , Xenograft Model Antitumor Assays , Zonula Occludens-1 Protein/metabolism , beta Catenin/metabolism
20.
Chemosphere ; 223: 204-210, 2019 May.
Article En | MEDLINE | ID: mdl-30780031

A new, environmental friendly, polysilicate ferric manganese (PSFM) coagulant, composed of Fe, Mn and Si, was designed and developed. As part of the process, the PSFM flocs were then deposited onto an ultrafiltration (UF) membrane to increase the removal of active dyes and its antifouling properties in the presence of the active dye was tested. Influencing factors, such as dosage of coagulant and solution pH, were systematically investigated and included as the process optimization. The results show that PSFM flocs were well distributed on the membrane surface and a dense and homogeneous deposition layer was formed under optimal conditions. According to the characterization of PSFM floc by Fourier infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), the major phase of PSFM floc is determined to be MnxFeySizOw(OH)i and the functional groups of this component contribute positively to the coagulation performance. The removal rate of the active yellow dye reached 86% at pH 5.0 with small and regular floc formed in the dense deposition layers. At pH 11.0 loose deposition layers were formed by large flocs and the removal of the active yellow dye reduce to 11%. Therefore, PSFM has a commendable potential to be used for producing a kind of deposited UF membrane with an excellent performance by controlling the forms of flocs and the deposition layers, which is the key mechanism to achieve a high efficiency for removal of active yellow dye.


Coloring Agents/isolation & purification , Membranes, Artificial , Ultrafiltration/methods , Water Purification/methods , Ferric Compounds/chemistry , Flocculation , Manganese/chemistry , Silicates/chemistry , Ultrafiltration/instrumentation
...