Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.152
Filter
1.
Front Hum Neurosci ; 18: 1397452, 2024.
Article in English | MEDLINE | ID: mdl-39086376

ABSTRACT

Introduction: In goal-directed tasks, visual prompts before the appearance of goals can make people ready in advance, which helps them to complete the movement better, and the presentation type of the visual prompt is very important. In previous studies, it has not been clear how different types of visual prompts guide attention in goal-directed tasks. Methods: According to the characteristics of goal-directed tasks, our research designed three different prompts: the cue prompt (featuring static arrow), the preparation prompt (involving dynamic countdown), and the combination prompt of cue and preparation information (simultaneously incorporating arrow and countdown). We used event-related potential components (CNV and P300) and graph theory indicators (clustering coefficient and characteristic path length) under the brain function connection to analyze the attention state of the brain. Results: The results showed that the combination prompts better guided the participants' sustained attention during the prompt stage, making them well prepared for the movement. Thus, after the target appeared, the participants had better executive control and achieved a faster response to the target. However, under the combination prompt, the participants consumed more attention resources during the prompt stage. Discussion: We believe that for the participants with impaired cognitive function, cue prompts or preparation prompts can be considered, which also play a role in guiding the participants' attention and helping them make motor preparations when less attention resources are consumed. This study provides a neurophysiological and behavioral foundation for the design of visual prompts in goal-directed tasks.

2.
Clin Chem Lab Med ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39089988

ABSTRACT

OBJECTIVES: Blood cell-free DNA (cfDNA) can be a new reliable tool for detecting epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. However, the currently reported cfDNA assays have a limited role in detecting drug-resistant mutations due to their deficiencies in sensitivity, stability, or mutation detection rate. METHODS: We developed an Archaeoglobus fulgidus-derived flap endonuclease (Afu FEN)-based DNA-enhanced amplification system of mutated cfDNA by designing a pair of hairpin probes to anneal with wild-type cfDNA to form two 5'-flaps, allowing for the specific cleavage of wild-type cfDNA by Afu FEN. When the dominant wild-type somatic cfDNA fragments were cleaved by structure-recognition-specific Afu FEN, the proportion of mutated cfDNA in the reaction system was greatly enriched. As the amount of mutated cfDNA in the system was further increased by PCR amplification, the mutation status could be easily detected through first-generation sequencing. RESULTS: In a mixture of synthetic wild-type and T790M EGFR DNA fragments, our new assay still could detect T790M mutation at the fg level with remarkably high sensitivity. We also tested its performance in detecting low variant allele frequency (VAF) mutations in clinical samples from NSCLC patients. The plasma cfDNA samples with low VAF (0.1 and 0.5 %) could be easily detected by DNA-enhanced amplification. CONCLUSIONS: This system with enhanced amplification of mutated cfDNA is an effective tool used for the early screening and individualized targeted therapy of NSCLC by providing a rapid, sensitive, and economical way for the detection of drug-resistant mutations in tumors.

3.
Front Vet Sci ; 11: 1417244, 2024.
Article in English | MEDLINE | ID: mdl-39104549

ABSTRACT

Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.

4.
Discov Oncol ; 15(1): 330, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093379

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, making the prognostic prediction challenging. Ferroptosis, an iron-dependent form of cell death, is a key regulator in the initiation, progression, and metastasis of HCC. However, the expression and function of ferroptosis-related genes (FRGs) in HCC remained largely unclear. In this study, we analyzed TCGA datasets and identified 58 survival-related deferentially expressed FRGs (DE-FRGs). Then, based on the results of LASSO analysis, we developed a novel prognostic model based on 12 survival-related DE-FRGs. Survival assays indicated a strong prognostic ability of this new model in predicting clinical prognosis of HCC patients. In addition, we conducted an exploration of molecular subtypes related to HCC and delved into the associated immune characteristics and gene expression patterns. Among the 12 survival-related DE-FRGs, our attention focused on ABHD12 (abhydrolase domain containing 12) which was highly expressed in HCC and associated with advanced clinical stages. Multivariate assays confirmed that ABHD12 was a significant prognostic factor for HCC patients. Immune analysis revealed that ABHD12 may play an important role in tumor microenvironment. Finally, we performed RT-PCR and confirmed that ABHD12 was highly expressed in HCC cells. Functional experiments revealed that ABHD12 knockdown may suppress the proliferation and migration of HCC cells. These findings emphasized the significance of ABHD12 as a potential prognostic marker for HCC and its crucial role in the field of tumor biology. Additionally, the study introduces a novel survival model that holds promise for enhancing prognostic predictions in HCC patients. Overall, this research provided valuable insights for a deeper comprehension of the complexity of HCC and the development of personalized treatment strategies.

5.
Nat Metab ; 6(8): 1505-1528, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39134903

ABSTRACT

Lysine ß-hydroxybutyrylation (Kbhb) is a post-translational modification induced by the ketogenic diet (KD), a diet showing therapeutic effects on multiple human diseases. Little is known how cellular processes are regulated by Kbhb. Here we show that protein Kbhb is strongly affected by the KD through a multi-omics analysis of mouse livers. Using a small training dataset with known functions, we developed a bioinformatics method for the prediction of functionally important lysine modification sites (pFunK), which revealed functionally relevant Kbhb sites on various proteins, including aldolase B (ALDOB) Lys108. KD consumption or ß-hydroxybutyrate supplementation in hepatocellular carcinoma cells increases ALDOB Lys108bhb and inhibits the enzymatic activity of ALDOB. A Kbhb-mimicking mutation (p.Lys108Gln) attenuates ALDOB activity and its binding to substrate fructose-1,6-bisphosphate, inhibits mammalian target of rapamycin signalling and glycolysis, and markedly suppresses cancer cell proliferation. Our study reveals a critical role of Kbhb in regulating cancer cell metabolism and provides a generally applicable algorithm for predicting functionally important lysine modification sites.


Subject(s)
Diet, Ketogenic , Lysine , Protein Processing, Post-Translational , Lysine/metabolism , Animals , Mice , Humans , Fructose-Bisphosphate Aldolase/metabolism , 3-Hydroxybutyric Acid/metabolism , Liver Neoplasms/metabolism , Neoplasms/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Proliferation
6.
Front Pharmacol ; 15: 1381413, 2024.
Article in English | MEDLINE | ID: mdl-39130634

ABSTRACT

Objectives: Newborns and small infants are unable to cooperate actively during diagnostic procedures; therefore, sedation is often employee to maintain immobilization and obtain high-quality images. However, these procedures are often indicated in sick, vulnerable, or hemodynamically unstable neonates and young infants, which raises the associated risks of sedation. This study summarizes our 4-year of experience with safe and effective procedural sedation in this vulnerable population. Study design: This retrospective study analyzed data on neonates and young infants who underwent non-painful diagnostic procedures from December 2019 to November 2023. Patients were categorized into the neonate (aged≦ 28 days) and the young infant (29 days ≦ aged ≦ 90 days) groups. Results: Non-pharmacological strategies, including sleeping naturally, swaddling/facilitated tucking, non-nutritive sucking, and skin-to-skin care, can achieve a success rate for sedation about 98.4%. In terms of pharmacological methods, our institution primarily utilizes chloral hydrate for procedural sedation in neonates and young infants undergoing non-painful diagnostic procedures. Midazolam serves as an alternative sedative. Chloral hydrate alone demonstrated a 92.5% success rate on the first attempt, compared to midazolam alone, with an 85.11% success rate. Neonates experienced a higher incidence of adverse events during sedation compared to young infants. Conclusion: This study reviews our 4-year experience with procedural sedation in neonates and young infants. Chloral hydrate demonstrated a high degree of safety and efficacy in this population. However, supervision by skilled medical personnel and extended observation is required. In our institution, the experience with midazolam is limited in this population, and further research is warranted to establish its safety and efficacy. Non-pharmacological strategies can achieve an acceptable rate of sedation success, which can be used based on patient's tolerance.

7.
Cardiovasc Toxicol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136863

ABSTRACT

Previous studies have found a possible association between nickel and metabolic syndrome (MetS), but with conflicting results. No studies have determined whether nickel exposure increases the prevalence of MetS in the general U.S. population. Therefore, we used data from the National Health and Nutrition Examination Survey (NHANES) to assess the association between urinary nickel and MetS. Since urinary nickel levels were presented as a skewed distribution, they were normalized using a logarithmic transformation. Weighted multivariate logistic models, restricted cubic spline, threshold effect analysis, and subgroup analyses were used to examine the association between urinary nickel concentration and the risk of MetS and its components. Based on data from 1577 participants, individuals in the second, third, and fourth quartiles of urinary nickel had an adjusted OR for MetS of 1.42 (95% CI: 0.88, 2.28), 2.00 (95% CI: 1.22, 3.28), and 1.68 (95% CI: 1.05, 2.70), respectively, representing an inverted "L"-shaped nonlinear dose-response relationship with an inflection point at 0.2141 ng/L. Patients over the age of 40, males, less educated, and smokers are more susceptible to nickel exposure. In addition, there were significant associations between nickel and most components of the MetS, with the strongest to weakest correlations being high fasting glucose, reduced high-density lipoprotein, abdominal obesity, and elevated blood pressure; however, there was no significant correlation between nickel and hyperlipidemia. In conclusion, environmental nickel exposure increases the prevalence of MetS in U.S. adults, particularly in males over 40 years of age, those with less education, and smokers.

9.
Front Pharmacol ; 15: 1338442, 2024.
Article in English | MEDLINE | ID: mdl-38989152

ABSTRACT

Background: Poly (ADP-Ribose) Polymerase (PARP) inhibitors represent a novel class of drugs that hinder DNA repair mechanisms in tumor cells, leading to cell death. This systematic review aims to evaluate the effectiveness, safety, and potential adverse effects of PARP inhibitors (PARPi) in the management of patients with advanced lung cancer. Materials and Methods: We conducted a comprehensive search for relevant studies in PubMed, Embase, Cochrane, and ClinicalTrials.gov. We extracted primary and secondary outcome measures, including progression-free survival (PFS), overall survival (OS), and adverse events (AEs), from the identified literature for subsequent meta-analysis and systematic review. Results: This study encompassed twelve randomized controlled trials, involving 3,132 patients with advanced lung cancer. In comparison to non-PARPi treatments, the administration of PARPi significantly extended OS (hazard ratio (HR) = 0.90, 95% CI = 0.83-0.97, p = 0.006). However, the difference in PFS did not reach statistical significance. Conclusion: In summary, therapies incorporating PARPi provide a degree of benefit by extending OS in patients with advanced lung cancer. Nonetheless, further trials are necessary to furnish additional evidence regarding the efficacy and safety of PARPi in the treatment of lung cancer.Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier number: CRD42023424673.

10.
Ann Med Surg (Lond) ; 86(7): 3880-3886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989172

ABSTRACT

Background: Syncope is a serious consequence in patients with hypertrophic obstructive cardiomyopathy (HOCM). Percutaneous endocardial septal radiofrequency ablation (PESA) has emerged as a promising intervention to alleviate symptoms and enhance the quality of life for HOCM patients. However, little is known about the effects of PESA on syncope in HOCM. The authors aimed to study the effects of PESA on syncope in patients with HOCM. Materials and methods: Nineteen patients with HOCM and syncope were enrolled. The left ventricular outflow tract gradient (LVOTG) of the patients was more than 50 mmHg despite medication. The participants underwent PESA under the guidance of intracardiac echocardiography (ICE) combined with a three-dimensional electrophysiological mapping system. The patients were followed for 3 (3-5.5) months. Results: The mean age of the patients was 54.8±13.7 years. Out of the 19 participants, 7 (37%) were females. During the follow-up, the syncope was completely alleviated in 14 patients (73.7%) or the syncope episodes were reduced greater than or equal to 80% in 16 patients (84.2%). The mean NYHA functional class significantly improved from 2.2±0.7 at baseline to 1.7±0.6 during follow-up (P=0.002). The LVOTG and septal thickness showed a decreasing trend from baseline to follow-up (LVOTG: P=0.083, septal thickness: P=0.086). Conclusion: The authors' investigation provides evidence supporting the effectiveness of PESA in reducing syncope episodes in patients with HOCM.

11.
Diabetol Metab Syndr ; 16(1): 169, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026361

ABSTRACT

BACKGROUND: The interplay between atrial fibrillation (AF) and obesity on mortality in critically ill patients warrants detailed exploration, given their individual impacts on patient prognosis. This study aimed to assess the associations between AF, obesity, and 1-year mortality in a critically ill population. METHODS: Utilizing data from the Medical Information Mart for Intensive Care (MIMIC)-IV database, we conducted a retrospective analysis of adult patients admitted to the intensive care unit. The primary endpoint was 1-year mortality, analyzed through Cox regression with hazard ratio (HR) and Kaplan-Meier survival methods. RESULTS: The study included 25,654 patients (median age 67.0 years, 40.6% female), with 39.0% having AF and 36.1% being obese. Multivariate COX regression analysis revealed that AF was associated with a 14.7% increase in the risk of 1-year mortality (p < 0.001), while obesity was linked to a 13.9% reduction in mortality risk (p < 0.001). The protective effect of obesity on mortality was similar in patients with (HR = 0.85) and without AF (HR = 0.86). AF led to a slightly higher risk of mortality in patients without obesity (HR = 1.16) compared to those with obesity (HR = 1.13). Kaplan-Meier survival curves highlighted that non-obese patients with AF had the lowest survival rate, whereas the highest survival was observed in obese patients without AF. CONCLUSIONS: AF significantly increased 1-year mortality risk in critically ill patients, whereas obesity was associated with a decreased mortality risk. The most adverse survival outcomes were identified in non-obese patients with AF.

12.
Diabetes Metab Syndr ; 18(6): 103067, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955095

ABSTRACT

BACKGROUND: Semaglutide, a glucagon-like peptide-1 receptor agonist, is reported to have cardiac benefits, but its effects on preventing atrial fibrillation (AF) remain inconclusive. This study aimed to investigate whether semaglutide can prevent AF occurrence in patients with type 2 diabetes mellitus (T2DM), obesity, or overweight. METHODS: We searched MEDLINE, EMBASE, the Cochrane CENTRAL database, and clinicaltrials.gov from inception to December 29, 2023. Randomized controlled trials of semaglutide in patients with T2DM, obesity, or overweight were included. The primary outcome was AF occurrence. Relative risks (RRs) with 95 % confidence intervals (CIs) were calculated for the overall population and subgroups. RESULTS: Twenty-one trials comprising 25957 patients were included. In the overall pooled analysis, semaglutide decreased AF occurrence compared to control drugs (RR 0.70, 95 % CI 0.52-0.95). This result was consistent in trials using other antihyperglycemic medications as controls (RR 0.43, 95 % CI 0.21-0.89), but not in placebo-controlled trials (RR 0.77, 95 % CI 0.56-1.07). The outcome was favorable for patients with T2DM (RR 0.71, 95 % CI 0.52-0.97), but not for patients with overweight or obesity (RR 0.56, 95 % CI 0.18-1.73). Results varied by type of semaglutide, with oral semaglutide showing an RR of 0.49 (95 % CI 0.25-0.97) and subcutaneous semaglutide showing an RR of 0.77 (95 % CI 0.55-1.07). CONCLUSION: Semaglutide was associated with a reduced risk of AF occurrence in the overall analysis. Favorable outcomes were observed in subsets using other antihyperglycemic medications as controls, in patients with T2DM, and with oral semaglutide.

13.
J Transl Med ; 22(1): 671, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033101

ABSTRACT

BACKGROUND: The molecular mechanisms underlying nonalcoholic fatty liver disease (NAFLD) remain to be fully elucidated. Ubiquitin specific protease 13 (USP13) is a critical participant in inflammation-related signaling pathways, which are linked to NAFLD. Herein, the roles of USP13 in NAFLD and the underlying mechanisms were investigated. METHODS: L02 cells and mouse primary hepatocytes were subjected to free fatty acid (FFA) to establish an in vitro model reflective of NAFLD. To prepare in vivo model of NAFLD, mice fed a high-fat diet (HFD) for 16 weeks and leptin-deficient (ob/ob) mice were used. USP13 overexpression and knockout (KO) strategies were employed to study the function of USP13 in NAFLD in mice. RESULTS: The expression of USP13 was markedly decreased in both in vitro and in vivo models of NAFLD. USP13 overexpression evidently inhibited lipid accumulation and inflammation in FFA-treated L02 cells in vitro. Consistently, the in vivo experiments showed that USP13 overexpression ameliorated hepatic steatosis and metabolic disorders in HFD-fed mice, while its deficiency led to contrary outcomes. Additionally, inflammation was similarly attenuated by USP13 overexpression and aggravated by its deficiency in HFD-fed mice. Notably, overexpressing of USP13 also markedly alleviated hepatic steatosis and inflammation in ob/ob mice. Mechanistically, USP13 bound to transforming growth factor ß-activated kinase 1 (TAK1) and inhibited K63 ubiquitination and phosphorylation of TAK1, thereby dampening downstream inflammatory pathways and promoting insulin signaling pathways. Inhibition of TAK1 activation reversed the exacerbation of NAFLD caused by USP13 deficiency in mice. CONCLUSIONS: Our findings indicate the protective role of USP13 in NAFLD progression through its interaction with TAK1 and inhibition the ubiquitination and phosphorylation of TAK1. Targeting the USP13-TAK1 axis emerges as a promising therapeutic strategy for NAFLD treatment.


Subject(s)
Diet, High-Fat , MAP Kinase Kinase Kinases , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Ubiquitin-Specific Proteases , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , MAP Kinase Kinase Kinases/metabolism , Ubiquitin-Specific Proteases/metabolism , Humans , Male , Enzyme Activation , Inflammation/pathology , Mice, Knockout , Mice , Hepatocytes/metabolism , Cell Line , Ubiquitination
14.
Heliyon ; 10(13): e33741, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027492

ABSTRACT

Introduction: and objectives: Extracellular vesicles (EVs) have emerged as key players in intercellular communication within the context of non-alcoholic fatty liver disease (NAFLD). This study aims to explore the intricate crosstalk between hepatocytes and hepatic stellate cells (HSCs) mediated by EVs in NAFLD. Materials and methods: EVs ferritin was detected in hepatocytes stimulated with free fatty acids (FFA) as well as in NAFLD mice. Deferoxamine (DFO) was employed to reduce ferritin levels, while GW4869 was utilized to inhibit EVs. The impact of EVs ferritin on the HSCs activation was evaluated both in vitro and in vivo. Additionally, serum EVs ferritin levels were compared between NAFLD patients and controls. Results: FFA treatment induces the formation and secretion of EVs and facilitates the release of ferritin from hepatocytes via EVs. Subsequently, EVs ferritin is hijacked by HSCs, prompting accelerated HSCs activation. Silencing ferritin with DFO and inhibiting EVs formation and secretion with GW4869 can reverse the effects of FFA treatment and disrupt the communication between hepatocytes and HSCs. Accumulation of ferritin leads to excessive reactive oxygen species (ROS) production, promoting HSCs fibrogenesis. Conversely, depleting EVs ferritin cargo restores liver function, concurrently mitigating NAFLD-associated fibrosis. Notably, NAFLD patients exhibit significantly elevated levels of serum EVs ferritin. Conclusions: This study unveils a previously underestimated role of ferritin in HSCs upon its release from hepatocytes, emphasizing DFO as a promising compound to impede NAFLD advancement.

15.
QJM ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078203
16.
Children (Basel) ; 11(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062212

ABSTRACT

Artificial intelligence has been applied to medical diagnosis and decision-making but it has not been used for classification of Class III malocclusions in children. OBJECTIVE: This study aims to propose an innovative machine learning (ML)-based diagnostic model for automatically classifies dental, skeletal and functional Class III malocclusions. METHODS: The collected data related to 46 cephalometric feature measurements from 4-14-year-old children (n = 666). The data set was divided into a training set and a test set in a 7:3 ratio. Initially, we employed the Recursive Feature Elimination (RFE) algorithm to filter the 46 input parameters, selecting 14 significant features. Subsequently, we constructed 10 ML models and trained these models using the 14 significant features from the training set through ten-fold cross-validation, and evaluated the models' average accuracy in test set. Finally, we conducted an interpretability analysis of the optimal model using the ML model interpretability tool SHapley Additive exPlanations (SHAP). RESULTS: The top five models ranked by their area under the curve (AUC) values were: GPR (0.879), RBF SVM (0.876), QDA (0.876), Linear SVM (0.875) and L2 logistic (0.869). The DeLong test showed no statistical difference between GPR and the other models (p > 0.05). Therefore GPR was selected as the optimal model. The SHAP feature importance plot revealed that he top five features were SN-GoMe (the ratio of the length of the anterior skull base SN to that of the mandibular base GoMe), U1-NA (maxillary incisor angulation to NA plane), Overjet (the distance between two lines perpendicular to the functional occlusal plane from U1 and L), ANB (the difference between angles SNA and SNB), and AB-NPo (the angle between the AB and N-Pog line). CONCLUSIONS: Our findings suggest that ML models based on cephalometric data could effectively assist dentists to classify dental, functional and skeletal Class III malocclusions in children. In addition, features such as SN_GoMe, U1_NA and Overjet can as important indicators for predicting the severity of Class III malocclusions.

17.
Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964333

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) provide modest but unsatisfactory benefits for extensive-stage small cell lung cancer (ES-SCLC). Developing strategies for treating ES-SCLC is critical. METHODS: We preliminarily explored the outcomes of salvage low-dose radiotherapy (LDRT) plus ICI on refractory SCLC patients. Next, we evaluated the combinational efficacy in murine SCLC. The tumor immune microenvironment (TIME) was analyzed for mechanistic study. Subsequently, we conducted a multicenter, prospective phase II trial that administered concurrent thoracic LDRT plus chemoimmunotherapy to treatment-naive ES-SCLC patients (MATCH trial, NCT04622228). The primary endpoint was confirmed objective response rate (ORR), and the key secondary endpoints included progression-free survival (PFS) and safety. FINDINGS: Fifteen refractory SCLC patients treated with LDRT plus ICI were retrospectively reviewed. The ORR was 73.3% (95% confidence interval [CI], 44.9-92.2). We identified a specific dose of LDRT (15 Gy/5 fractions) that exhibited growth retardation and improved survival in murine SCLC when combined with ICIs. This combination recruited a special T cell population, TCF1+ PD-1+ CD8+ stem-like T cells, from tumor-draining lymph nodes into the TIME. The MATCH trial showed a confirmed ORR of 87.5% (95% CI, 75.9-94.8). The median PFS was 6.9 months (95% CI, 5.4-9.3). CONCLUSIONS: These findings verified that LDRT plus chemoimmunotherapy was safe, feasible, and effective for ES-SCLC, warranting further investigation. FUNDING: This research was funded by West China Hospital (no. ZYJC21003), the National Natural Science Foundation of China (no. 82073336), and the MATCH trial was fully funded by Roche (China) Holding Ltd. (RCHL) and Shanghai Roche Pharmaceuticals Ltd. (SRPL).

18.
Cancer Med ; 13(13): e7307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967137

ABSTRACT

BACKGROUND: This study aims to investigate the early kinetics of interleukin 6 (IL-6), procalcitonin (PCT), and C-reactive protein (CRP) on initial antibiotic efficacy in hematological disorder patients with febrile neutropenia (FN). METHODS: A total of 40 patients with 43 episodes of FN were enrolled and divided into initial antibiotic effective group (IAE group, n = 24) and initial antibiotic ineffective group (IAI group, n = 19). The levels of IL-6, PCT, and CRP before antibacterial treatment (T0), and 12 h (T1), 24 h (T2), 48 h (T3), and 72 h (T4) post-antibacterial treatment were determined, respectively. Furthermore, the receiver operating characteristic curve (ROC) analysis was performed to evaluate the clinical value of indicators. RESULTS: In IAE group, the IL-6 levels gradually decreased from T0 to T4, and the CRP levels significantly decreased at 48 to 72 h, whereas both IL-6 and CRP remained at high levels in the IAI group. The PCT levels in both groups increased at the early stage of anti-infection (T1-T2) and reached to peak at T1-T2 in effective group. ROC curve analysis identified IL-6 as a predictive biomarker for initial antibiotic efficacy at 12, 48, and 72 h after treatment, with the AUC of 0.698, 0.744, and 0.821, respectively. In addition, CRP demonstrated predictive ability of initial antibiotics against infection at 24, 48, and 72 h after therapy, with the AUC of 0.724, 0.741, and 0.797, respectively. ROC curve analysis of percentage changes demonstrated that IL-6 percentage change showed predictive ability of antibiotic efficacy at the early stage, and both the IL-6 and CRP percentage changes showed the predictive ability of antibiotic efficacy 48 or 72 h after antibiotics therapy. CONCLUSION: This study confirmed IL-6 and CRP levels, and the percentage change in IL-6 as the biomarkers for initial antibiotic efficacy prediction in hematological disorder patients with FN.


Subject(s)
Anti-Bacterial Agents , Biomarkers , C-Reactive Protein , Febrile Neutropenia , Interleukin-6 , Procalcitonin , Humans , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Interleukin-6/blood , Procalcitonin/blood , Male , Female , Anti-Bacterial Agents/therapeutic use , Middle Aged , Febrile Neutropenia/drug therapy , Febrile Neutropenia/blood , Prospective Studies , Adult , Biomarkers/blood , ROC Curve , Aged , Treatment Outcome
19.
Chem Sci ; 15(29): 11488-11499, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39055026

ABSTRACT

The transformation of CO2 into value-added products from an impure CO2 stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 µmol g-1 h-1. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies. We have reached a clear understanding of its properties and performance that indicates that this highly robust photocatalyst could be used to design an efficient visible-light-mediated reduction strategy for the transformation of impure CO2 streams into value-added products.

20.
Ageing Res Rev ; 100: 102428, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038742

ABSTRACT

Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL