Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 787, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951550

ABSTRACT

Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFß ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.


Subject(s)
Adipose Tissue, White , Single-Cell Analysis , Subcutaneous Fat , Weaning , Animals , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, White/cytology , Subcutaneous Fat/metabolism , Subcutaneous Fat/cytology , Mice, Inbred C57BL , Adipocytes/metabolism , Adipocytes/cytology , Male , Female
2.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870290

ABSTRACT

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Subject(s)
ATP-Dependent Proteases , Artemisinins , Cholesterol Side-Chain Cleavage Enzyme , Mitochondrial Proteins , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Rats , Androgens/metabolism , Artemisinins/therapeutic use , Artemisinins/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Disease Models, Animal , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Ovary/drug effects , Ovary/metabolism , Polycystic Ovary Syndrome/drug therapy , Proteolysis , Mice, Inbred C57BL , Young Adult , Adult , Rats, Sprague-Dawley , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism
3.
Mol Genet Genomics ; 299(1): 37, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494535

ABSTRACT

Identity by descent (IBD) segments, uninterrupted DNA segments derived from the same ancestral chromosomes, are widely used as indicators of relationships in genetics. A great deal of research focuses on IBD segments between related pairs, while the statistical analyses of segments in irrelevant individuals are rare. In this study, we investigated the basic informative features of IBD segments in unrelated pairs in Chinese populations from the 1000 Genome Project. A total of 5922 IBD segments in Chinese interpopulation unrelated individual pairs were detected via IBIS and the average length of IBD was 3.71 Mb in length. It was found that 17.86% of unrelated pairs shared at least one IBD segment in the Chinese cohort. Furthermore, a total of 49 chromosomal regions where IBD segments clustered in high abundance were identified, which might be sharing hotspots in the human genome. Such regions could also be observed in other ancestry populations, which implies that similar IBD backgrounds also exist. Altogether, these results demonstrated the distribution of common background IBD segments, which helps improve the accuracy in pedigree studies based on IBD analysis.


Subject(s)
Asian People , Genome, Human , Humans , Asian People/genetics , Genome, Human/genetics , Pedigree , Research Design , China
4.
Mol Metab ; 81: 101891, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307386

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) development and function are essential for maintaining energy balance. However, the key factors that specifically regulate brown adipogenesis require further identification. Here, we demonstrated that the nuclear receptor subfamily 2 group F member 6 (NR2F6) played a pivotal role in brown adipogenesis and energy homeostasis. METHODS: We examined the differentiation of immortalized brown adipocytes and primary brown adipocytes when NR2F6 were deleted, and explored the mechanism through which NR2F6 regulated adipogenesis using ChIP-qPCR in vitro. Male wild type (WT) and Pdgfra-Cre-mediated deletion of Nr2f6 in preadipocytes (NR2F6-PKO) mice were fed with high fat diet (HFD) for 12 weeks, and adiposity, glucose intolerance, insulin resistance and inflammation were assessed. RESULTS: NR2F6 exhibited abundant expression in BAT, while its expression was minimal in white adipose tissue (WAT). Within BAT, NR2F6 was highly expressed in preadipocytes, experienced a transient increase in the early stage of brown adipocyte differentiation, and significantly decreased in the mature adipocytes. Depletion of NR2F6 in preadipocytes inhibited brown adipogenesis, caused hypertrophy of brown adipocytes, and impaired thermogenic function of BAT, but without affecting WAT development. NR2F6 transcriptionally regulated PPARγ expression to promote adipogenic process in brown adipocytes. Loss of NR2F6 in preadipocytes led to increased susceptibility to diet-induced metabolic disorders. CONCLUSIONS: Our findings unveiled NR2F6 as a novel key regulator of brown adipogenesis, potentially opening up new avenues for maintaining metabolic homeostasis by targeting NR2F6.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Animals , Male , Mice , Adipocytes, Brown/metabolism , Adipogenesis , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL