Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.955
Filter
1.
Front Nutr ; 11: 1361126, 2024.
Article in English | MEDLINE | ID: mdl-39086542

ABSTRACT

Background: There is a link between cardiovascular diseases and intestinal permeability, but it is not clear. This review aimed to elucidate intestinal permeability in cardiovascular diseases by meta-analysis. Methods: Multidisciplinary electronic databases were searched from the database creation to April 2023. All included studies were assessed for risk of bias according to the Joanna Briggs Institute Critical Appraisal Checklist. The heterogeneity of each study was estimated using the I2 statistic, and the data were analyzed using Review Manager 5.3 and Stata 16.0. Results: In total, studies in 13 pieces of literature were included in the quantitative meta-analysis. These studies were conducted among 1,321 subjects mostly older than 48. Patients had higher levels of intestinal permeability markers (lipopolysaccharide, d-lactate, zonulin, serum diamine oxidase, lipopolysaccharide-binding protein, intestinal fatty acid binding protein, and melibiose/rhamnose) than controls (standard mean difference SMD = 1.50; 95% CI = 1.31-1.88; p < 0.00001). Similarly, lipopolysaccharide levels were higher in patients than in controls (SMD = 1.61; 95% CI = 1.02-2.21; p < 0.00001); d-lactate levels were higher in patients than in controls (SMD = 1.16; 95% CI = 0.23-2.08; p = 0.01); zonulin levels were higher in patients than in controls (SMD = 1.74; 95% CI = 1.45-2.03; p < 0.00001); serum diamine oxidase levels were higher in patients than in controls (SMD = 2.51; 95% CI = 0.29-4.73; p = 0.03). Conclusion: The results of the meta-analysis verified that the intestinal barrier was damaged and intestinal permeability was increased in patients with cardiovascular diseases. These markers may become a means of the diagnosis and treatment of cardiovascular diseases. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=414296, identifier CRD42023414296.

2.
Rev Esp Enferm Dig ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087656

ABSTRACT

A 72-year-old female who had received emergent endoscopic cyanoacrylate (CYA) injection for bleeding gastric varices (GV) two month before was readmitted due to recurrence of melena. Current gastroscopy verified the type-2 GV (GOV-2) according to Sarin's classification with stigmata of recent bleeding. Endoscopic ultrasound (EUS) identified the largest varix of 8.7mm in diameter, which prompted us to consider EUS-guided coiling combined with CYA injection as an alternative therapeutic strategy, considering the short interval between prior injection and rebleeding. Via trans-esophageal route, the abovementioned varix was punctured using a 19-gauge FNA needle preloaded with a 0.035-inch coil with diameter of 10mm and length of 14cm (Nester, Cook Medical, Bloomington, IN). Initially, the stylet used as a pusher was advanced smoothly and part of the coil was visualized to have been pushed out of the needle tip. However, the stylet could not be fully advanced to place the entire coil into the varix due to substantial resistance, which, regardless of the endeavor to adjust the needle, was not diminished.

3.
Front Immunol ; 15: 1425168, 2024.
Article in English | MEDLINE | ID: mdl-38947332

ABSTRACT

C-reactive protein (CRP) is a plasma protein that is evolutionarily conserved, found in both vertebrates and many invertebrates. It is a member of the pentraxin superfamily, characterized by its pentameric structure and calcium-dependent binding to ligands like phosphocholine (PC). In humans and various other species, the plasma concentration of this protein is markedly elevated during inflammatory conditions, establishing it as a prototypical acute phase protein that plays a role in innate immune responses. This feature can also be used clinically to evaluate the severity of inflammation in the organism. Human CRP (huCRP) can exhibit contrasting biological functions due to conformational transitions, while CRP in various species retains conserved protective functions in vivo. The focus of this review will be on the structural traits of CRP, the regulation of its expression, activate complement, and its function in related diseases in vivo.


Subject(s)
C-Reactive Protein , Humans , C-Reactive Protein/metabolism , C-Reactive Protein/immunology , Animals , Inflammation/immunology , Inflammation/metabolism , Immunity, Innate , Protein Conformation , Structure-Activity Relationship , Complement Activation
4.
Cancer Lett ; 598: 217112, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986734

ABSTRACT

Although anti-HER2 therapy has made significant strides in reducing metastasis and relapse in HER2-positive breast cancer, resistance to agents like trastuzumab, pertuzumab, and lapatinib frequently develops in patients undergoing treatment. Previous studies suggest that the hyperactivation of the PI3K-AKT signaling pathway by PIK3CA/PTEN gene mutations is implicated in HER2 resistance. In this study, we introduce a novel PI3K-p110α Proteolysis TAargeting Chimera (PROTAC) that effectively inhibits the proliferation of breast cancer cells by degrading PI3K-p110α. When tested in two lapatinib-resistant cell lines, JIMT1 and MDA-MB-453, both of which harbor PIK3CA mutations, the PI3K PROTAC notably reduced cell proliferation and induced G1 phase cell cycle arrest. Importantly, even at very low concentrations, PI3K PROTAC restored sensitivity to lapatinib. Furthermore, the efficacy of PI3K PROTAC surpassed that of Alpelisib, a selective PI3K-p110α kinase inhibitor in clinic. The superior performance of PI3K PROTAC was also confirmed in lapatinib-resistant breast cancer xenograft tumors and patient-derived breast cancer organoids (PDOs). In conclusion, this study reveals that the novel PI3K PROTAC we synthesized could serve as an effective agent to overcome lapatinib resistance.

5.
Article in English | MEDLINE | ID: mdl-39044405

ABSTRACT

Smart metal-metal oxide heterointerface construction holds promising potentials to endow an efficient electron redistribution for electrochemical CO2 reduction reaction (CO2RR). However, inhibited by the intrinsic linear-scaling relationship, the binding energies of competitive intermediates will simultaneously change due to the shifts of electronic energy level, making it difficult to exclusively tailor the binding energies to target intermediates and the final CO2RR performance. Nonetheless, creating specific adsorption sites selective for target intermediates probably breaks the linear-scaling relationship. To verify it, Ag nanoclusters were anchored onto oxygen vacancy-rich CeO2 nanorods (Ag/OV-CeO2) for CO2RR, and it was found that the oxygen vacancy-driven heterointerface could effectively promote CO2RR to CO across the entire potential window, where a maximum CO Faraday efficiency (FE) of 96.3% at -0.9 V and an impressively high CO FE of over 62.3% were achieved at a low overpotential of 390 mV within a flow cell. The experimental and computational results collectively suggested that the oxygen vacancy-driven heterointerfacial charge spillover conferred an optimal electronic structure of Ag and introduced additional adsorption sites exclusively recognizable for *COOH, which, beyond the linear-scaling relationship, enhanced the binding energy to *COOH without hindering *CO desorption, thus resulting in the efficient CO2RR to CO.

6.
Angew Chem Int Ed Engl ; : e202409629, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058372

ABSTRACT

Carbon aerogels (CAs) are attracting great attention for their multifunctional applications. Additionally, a large amount of biomass bits waste generated from agriculture and industry is regarded as the main carbon resource. However, the development of a facile, sustainable, and efficient method to produce CAs from biomass waste remains challenging. Here, a one-step Zn2+ ions glue triggered carbonization technology was reported to construct large-scale and high-performance CAs. Multiple biomass bits (wood bits, peanut shells, bamboo bits, and straw waste) were treated in the molten salt system (ZnCl2/KCl) at 300 °C for 2h to obtain large-block biomass bits derived CAs. Zn2+ ions as the glue cleavage cellulose hydrogen bonds of natural biomass, then facilitate dehydration crosslinking reaction between cellulose, hemicellulose, and lignin for re-constructing the whole block structure. The obtained CAs show high porosity (95%) and low density (0.078 g/cm3). Meanwhile, numerous of hydroxyl and carbonyl groups were well maintained during low temperature treated process, which facilitate chemical modification for various applications. For instance, amidoxime functionalized CAs were utilized as a filter for selective and highly efficient extraction of U(VI) from wastewater. The adsorption capacity and extraction efficiency reached 801.2 mg/g and 95% with a flux rate of 6.1×103 L/m2·h, respectively.

7.
Food Chem Toxicol ; 191: 114887, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053873

ABSTRACT

Zearalenone (ZEN) poses a potential threat on human and animal health partly through the nuclear factor (NF)-κB signaling pathway. In silico study suggested that rutin effective against TLR4 and NF-κB. A wetting test was designed to evaluate the effect and underlying mechanism of rutin in alleviating ZEN-induced inflammation in animals. Twenty-four female mice were randomly divided into 4 groups: control (basal diet), ZEN group (basal diet + ZEN), rutin group (basic diet + rutin), Z + R group (basal diet + rutin + ZEN). Results showed that rutin effectively alleviated ZEN-induced inflammation and damage of liver and jejunum in mice. Rutin addition reduced the content of lipopolysaccharide (LPS) in serum and liver mainly by improving the intestinal barrier function resulted from the production increase of short-chain fatty acids (SCFA). In sum, this study showed that rutin alleviated ZEN-induced liver inflammation and injury by modulating the gut microbiota, increasing the production of SCFA and improving intestinal barrier function, leading to the decrease of LPS in liver and the inhibition of MyD88 independent NF-κB signaling pathway in mice. Specifically, these findings may provide useful insights into the screening of functional natural compounds and its action mechanism to alleviate ZEN induced liver inflammation.

8.
J Ethnopharmacol ; : 118522, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971345

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Labisia pumila (Blume) Fern.-Vill, also known as Kacip Fatimah, is a traditional medicinal herb common throughout Southeast Asia. It is primarily used to facilitate childbirth and postpartum recovery in women. Additionally, it can also be used to treat dysentery, rheumatism, gonorrhea, and as an anti-flatulent. AIM OF THIS REVIEW: This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application. MATERIALS AND METHODS: The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science). RESULTS: This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, antiinflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement. CONCLUSIONS: LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.

9.
Molecules ; 29(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38998929

ABSTRACT

Potassium-ion batteries (PIBs) have been widely studied owing to the abundant reserves, widespread distribution, and easy extraction of potassium (K) resources. Molybdenum disulfide (MoS2) has received a great deal of attention as a key anode material for PIBs owing to its two-dimensional diffusion channels for K+ ions. However, due to its poor electronic conductivity and the huge influence of embedded K+ ions (with a large ionic radius of 3.6 Å) on MoS2 layer, MoS2 anodes exhibit a poor rate performance and easily collapsed structure. To address these issues, the common strategies are enlarging the interlayer spacing to reduce the mechanical strain and increasing the electronic conductivity by adding conductive agents. However, simultaneous implementation of the above strategies by simple methods is currently still a challenge. Herein, MoS2 anodes on reduced graphene oxide (MoS2/rGO) composite were prepared using one-step hydrothermal methods. Owing to the presence of rGO in the synthesis process, MoS2 possesses a unique scaled structure with large layer spacing, and the intrinsic conductivity of MoS2 is proved. As a result, MoS2/rGO composite anodes exhibit a larger rate performance and better cycle stability than that of anodes based on pure MoS2, and the direct mixtures of MoS2 and graphene oxide (MoS2-GO). This work suggests that the composite material of MoS2/rGO has infinite possibilities as a high-quality anode material for PIBs.

10.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998240

ABSTRACT

Sodium citrate (SC) is sensitive to violet light illumination (VLI) and acts as a weak reductant. Conversely, gold (III) chloride trihydrate (GC) often acts as an oxidant in a redox reaction. In this study, the influences of colored light on the production of gold nanoparticles (AuNPs) in a mixture of gold (III) ions and citrate via VLI and the antibacterial photodynamic inactivation (aPDI) of Escherichia coli (E. coli) are determined under alkaline conditions. The diameter of AuNPs is within the range of 3-15 nm, i.e., their mean diameter is 9 nm; when citrate is mixed with gold (III) ions under VLI, AuNPs are formed via an electron transfer process. Additionally, GC mixed with SC (GCSC) inhibits E. coli more effectively under VLI than it does under blue, green, or red light. GCSC and SC are shown to inhibit E. coli populations by 4.67 and 1.12 logs, respectively, via VLI at 10 W/m2 for 60 min under alkaline conditions. GCSC-treated E. coli has a more significant photolytic effect on anionic superoxide radical (O2•-) formation under VLI, as more O2•- is formed within E. coli if the GCSC-treated samples are subjected to VLI. The O2•- exhibits a greater effect in a solution of GCSC than that shown by SC alone under VLI treatment. Gold (III) ions in a GCSC system appear to act as an oxidant by facilitating the electron transfer from citrate under VLI and the formation of AuNPs and O2•- via GCSC photolysis under alkaline conditions. As such, the photolysis of GCSC under VLI is a useful process that can be applied to aPDI.

11.
Front Pharmacol ; 15: 1399460, 2024.
Article in English | MEDLINE | ID: mdl-38983920

ABSTRACT

Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.

12.
Sensors (Basel) ; 24(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000967

ABSTRACT

The Internet of Things (IoT) plays an essential role in people's daily lives, such as healthcare, home, traffic, industry, and so on. With the increase in IoT devices, there emerge many security issues of data loss, privacy leakage, and information temper in IoT network applications. Even with the development of quantum computing, most current information systems are weak to quantum attacks with traditional cryptographic algorithms. This paper first establishes a general security model for these IoT network applications, which comprises the blockchain and a post-quantum secure identity-based signature (PQ-IDS) scheme. This model divides these IoT networks into three layers: perceptual, network, and application, which can protect data security and user privacy in the whole data-sharing process. The proposed PQ-IDS scheme is based on lattice cryptography. Bimodal Gaussian distribution and the discrete Gaussian sample algorithm are applied to construct the fundamental difficulty problem of lattice assumption. This assumption can help resist the quantum attack for information exchange among IoT devices. Meanwhile, the signature mechanism with IoT devices' identity can guarantee non-repudiation of information signatures. Then, the security proof shows that the proposed PQ-IDS can obtain the security properties of unforgeability, non-repudiation, and non-transferability. The efficiency comparisons and performance evaluations show that the proposed PQ-IDS has good efficiency and practice in IoT network applications.

13.
Micromachines (Basel) ; 15(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39064437

ABSTRACT

To solve the problems of poor surface quality and low tool life in conventional machining (CM) of AerMet100 steel, an experimental study was conducted in laser-assisted machining (LAM) of AerMet100 steel. The effects of laser power, cutting speed, feed rate, and depth of cut on the surface roughness of AerMet100 steel were studied based on a single-factor experiment. The degree of influence of each factor on the surface roughness was evaluated by analyses of variance and range in the orthogonal experiment, and the combination of process parameters for the optimal surface roughness was obtained. The order of influence was as follows: laser power > cutting speed > depth of cut > feed rate; the optimal combination of process parameters was laser power 200 W, cutting speed 56.5 m/min, feed rate 0.018 mm/rev, and depth of cut 0.3 mm. Compared to CM, the surface morphology of the workpiece under the optimization of LAM was relatively smooth and flat, the surface roughness Ra was 0.402 µm, which was reduced by 62.11%, the flank wear was reduced from 208.69 µm to 52.17 µm, there were no tipping or notches, and the tool life was significantly improved. The study shows that the LAM of AerMet100 steel has obvious advantages in improving surface quality and reducing tool wear.

14.
Molecules ; 29(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064844

ABSTRACT

Diabetic complications pose a significant threat to life and have a negative impact on quality of life in individuals with diabetes. Among the various factors contributing to the development of these complications, endothelial dysfunction plays a key role. The main mechanism underlying endothelial dysfunction in diabetes is oxidative stress, which adversely affects the production and availability of nitric oxide (NO). Flavonoids, a group of phenolic compounds found in vegetables, fruits, and fungi, exhibit strong antioxidant and anti-inflammatory properties. Several studies have provided evidence to suggest that flavonoids have a protective effect on diabetic complications. This review focuses on the imbalance between reactive oxygen species and the antioxidant system, as well as the changes in endothelial factors in diabetes. Furthermore, we summarize the protective mechanisms of flavonoids and their derivatives on endothelial dysfunction in diabetes by alleviating oxidative stress and modulating other signaling pathways. Although several studies underline the positive influence of flavonoids and their derivatives on endothelial dysfunction induced by oxidative stress in diabetes, numerous aspects still require clarification, such as optimal consumption levels, bioavailability, and side effects. Consequently, further investigations are necessary to enhance our understanding of the therapeutic potential of flavonoids and their derivatives in the treatment of diabetic complications.


Subject(s)
Antioxidants , Diabetes Mellitus , Endothelium, Vascular , Flavonoids , Oxidative Stress , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Humans , Oxidative Stress/drug effects , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Animals , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Signal Transduction/drug effects
15.
Front Pharmacol ; 15: 1280779, 2024.
Article in English | MEDLINE | ID: mdl-39021832

ABSTRACT

Cancer is a major disease with ever-increasing morbidity and mortality. The metabolites derived from traditional Chinese medicine (TCM) have played a significant role in combating cancers with curative efficacy and unique advantages. Ferroptosis, an iron-dependent programmed death characterized by the accumulation of lipid peroxide, stands out from the conventional forms of cell death, such as apoptosis, pyroptosis, necrosis, and autophagy. Recent evidence has demonstrated the potential of TCM metabolites targeting ferroptosis for cancer therapy. We collected and screened related articles published in or before June 2023 using PubMed, Google Scholar, and Web of Science. The searched keywords in scientific databases were ferroptosis, cancer, tumor, traditional Chinese medicine, botanical drugs, and phytomedicine. Only research related to ferroptosis, the metabolites from TCM, and cancer was considered. In this review, we introduce an overview of the current knowledge regarding the ferroptosis mechanisms and review the research advances on the metabolites of TCM inhibiting cancer by targeting ferroptosis.

16.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2863-2870, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041145

ABSTRACT

Cinnamomum camphora chvar. borneol, a rare camphor tree variant recently identified in China, is distinguished by its high concentration of D-borneol, also known as " plant gold" due to its significant value. The essential oil extracted from this variant,rich in monoterpenes and sesquiterpenes, demonstrates a broad spectrum of pharmacological activities, including analgesic, antiinflammatory, antioxidant, cognition-enhancing, anti-bacterial, and insecticidal effects. These properties, underscored by extensive research, highlight the oil's potential in the biomedical, chemical, and food sectors as a valuable commodity. Nonetheless, the safety profile of this valuable oil remains poorly characterized, with its chemical composition and therapeutic efficacy subject to variations in the factors like geographic origin, harvesting timing, part used for extraction, and processing techniques. Such variability poses challenges to its clinical application and hampers the efficient exploitation of this resource. This review synthesizes current studies on C. camphora chvar. borneol essential oil and provides a detailed examination of its chemical and pharmacological profiles. In this study, we discuss existing research gaps and propose strategies for advancing its clinical use and industrial application, aiming to provide a foundational reference for future investigations and the resolution of its commercial and therapeutic challenges.


Subject(s)
Camphanes , Cinnamomum camphora , Oils, Volatile , Cinnamomum camphora/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Humans , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
17.
World J Oncol ; 15(4): 662-674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993257

ABSTRACT

Background: The clinical role of claudin 8 (CLDN8) in kidney renal clear cell carcinoma (KIRC) remains unclarified. Herein, the expression level and potential molecular mechanisms of CLDN8 underlying KIRC were determined. Methods: High-throughput datasets of KIRC were collected from GEO, ArrayExpress, SRA, and TCGA databases to determine the mRNA expression level of the CLDN8. In-house tissue microarrays and immunochemistry were performed to examine CLDN8 protein expression. A summary receiver operating characteristic curve (SROC) and standardized mean difference (SMD) forest plot were generated using Stata v16.0. Single-cell analysis was conducted to further prove the expression level of CLDN8. A clustered regularly interspaced short palindromic repeats knockout screen analysis was executed to assess the growth impact of CLDN8. Functional enrichment analysis was conducted using the Metascape database. Additionally, single-sample gene set enrichment analysis was implied to explore immune cell infiltration in KIRC. Results: A total of 17 mRNA datasets comprising 1,060 KIRC samples and 452 non-cancerous control samples were included in this study. Additionally, 105 KIRC and 16 non-KIRC tissues were analyzed using in-house immunohistochemistry. The combined SMD was -5.25 (95% confidence interval (CI): -6.13 to -4.37), and CLDN8 downregulation yielded an SROC area under the curve (AUC) close to 1.00 (95% CI: 0.99 - 1.00). CLDN8 downregulation was also confirmed at the single-cell level. Knocking out CLDN8 stimulated KIRC cell proliferation. Lower CLDN8 expression was correlated with worse overall survival of KIRC patients (hazard ratio of CLDN8 downregulation = 1.69, 95% CI: 1.2 - 2.4). Functional pathways associated with CLDN8 co-expressed genes were centered on carbon metabolism obstruction, with key hub genes ACADM, ACO2, NDUFS1, PDHB, SDHD, SUCLA2, SUCLG1, and SUCLG2. Conclusions: CLDN8 is downregulated in KIRC and is considered a potential tumor suppressor. CLDN8 deficiency may promote the initiation and progression of KIRC, potentially in conjunction with metabolic dysfunction.

18.
Lipids Health Dis ; 23(1): 234, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080624

ABSTRACT

With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.


Subject(s)
Insulin Resistance , Obesity , Humans , Obesity/metabolism , Inflammation/metabolism , Animals , Adipose Tissue/metabolism , Adipose Tissue/pathology , Diabetes Mellitus, Type 2/metabolism , Inflammation Mediators/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
19.
Chem Commun (Camb) ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39081239

ABSTRACT

Two new cationic meso-thiazolium-BODIPY-based water-soluble and red-shifted fluorescent probes were constructed for the first time. They can monitor cellular viscosity in dual organelles and show aggregation-induced emission (AIE), which is ascribed to the efficient restricted rotation of meso-thiazolium in viscous or hindered systems. Probe 3 with an N-benzyl group shows better AIE as compared to probe 2 with an N-methyl group.

20.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062814

ABSTRACT

In theory, two extreme forms of substances exist: the pure form and the single-molecule mixture form. The latter contains a mixture of molecules with molecularly different structures. Inspired by the "chemical space" concept, in this paper, I report a study of the single-molecule mixture state that combines model construction and mathematical analysis, obtaining some interesting results. These results provide theoretical evidence that the single-molecule mixture state may indeed exist in realistic synthetic or natural polymer systems.


Subject(s)
Polymers , Polymers/chemistry , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL