Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
J Phys Chem Lett ; 15(24): 6256-6265, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38843474

ABSTRACT

Large language models for artificial intelligence applications require energy-efficient computing. Neuromorphic photonics has the potential to reach significantly lower energy consumption in comparison with classical electronics. A recently proposed memlumor device uses photoluminescence output that carries information about its excitation history via the excited state dynamics of the material. Solution-processed metal halide perovskites can be used as efficient memlumors. We show that trapping of photogenerated charge carriers modulated by photoinduced dynamics of the trapping states themselves explains the memory response of perovskite memlumors on time scales from nanoseconds to minutes. The memlumor concept shifts the paradigm of the detrimental role of charge traps and their dynamics in metal halide perovskite semiconductors by enabling new applications based on these trap states. The appropriate control of defect dynamics in perovskites allows these materials to enter the field of energy-efficient photonic neuromorphic computing, which we illustrate by proposing several possible realizations of such systems.

2.
Org Biomol Chem ; 22(8): 1629-1633, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38318979

ABSTRACT

The divergent synthesis of benzo[e]-1,2-oxaphosphinines or benzo[d]-1,2-oxaphospholenes along with spirocyclic quasiphosphonium compounds based on 2-alkenylphenols and phosphorus(III/V) chlorides is presented. The reaction is condition-dependent and determined by the biphility of the phosphorus(III) derivative and the dual reactivity of 2-alkenylphenol. The procedures are applicable for obtaining benzo[e]-1,2-oxaphosphinines substituted at position 4 and disubstituted at positions 4 and 5 as well as 3,3-disubstituted benzo[d]-1,2-oxaphospholenes with good to high yields.

3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958742

ABSTRACT

Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 µM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.


Subject(s)
Organophosphates , Phosphoric Triester Hydrolases , Animals , Organophosphates/toxicity , Paraoxon/toxicity , Phosphoric Triester Hydrolases/chemistry , Nanotechnology
4.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770399

ABSTRACT

The present work demonstrates the optimization of the ligand structure in the series of bis(phosphine oxide) and ß-ketophosphine oxide representatives for efficient coordination of Tb3+ and Eu3+ ions with the formation of the complexes exhibiting high Tb3+- and Eu3+-centered luminescence. The analysis of the stoichiometry and structure of the lanthanide complexes obtained using the XRD method reveals the great impact of the bridging group nature between two phosphine oxide moieties on the coordination mode of the ligands with Tb3+ and Eu3+ ions. The bridging imido-group facilitates the deprotonation of the imido- bis(phosphine oxide) ligand followed by the formation of tris-complexes. The spectral and PXRD analysis of the separated colloids indicates that the high stability of the tris-complexes provides their safe conversion into polystyrenesulfonate-stabilized colloids using the solvent exchange method. The red Eu3+-centered luminescence of the tris-complex exhibits the same specificity in the solutions and the colloids. The pronounced luminescent response on the antibiotic ceftriaxone allows for sensing the latter in aqueous solutions with an LOD value equal to 0.974 µM.

5.
Nanomaterials (Basel) ; 12(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36364692

ABSTRACT

Silicon nanophotonics has become a versatile platform for optics and optoelectronics. For example, strong light localization at the nanoscale and lack of parasitic losses in infrared and visible spectral ranges make resonant silicon nanoparticles a prospect for improvement in such rapidly developing fields as photovoltaics. Here, we employed optically resonant silicon nanoparticles produced by laser ablation for boosting the power conversion efficiency of organic solar cells. Namely, we created colloidal solutions of spherical nanoparticles with a range of diameters (80-240 nm) in different solvents. We tested how the nanoparticles' position in the device, their concentration, silicon doping, and method of deposition affected the final device efficiency. The best conditions optimization resulted in an efficiency improvement from 6% up to 7.5%, which correlated with numerical simulations of nanoparticles' optical properties. The developed low-cost approach paves the way toward highly efficient and stable solution-processable solar cells.

6.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234748

ABSTRACT

A series of 5'-phosphorylated (dialkyl phosphates, diaryl phosphates, phosphoramidates, H-phosphonates, phosphates) 1,2,3-triazolyl nucleoside analogues in which the 1,2,3-triazole-4-yl-ß-D-ribofuranose fragment is attached via a methylene group or a butylene chain to the N-1 atom of the heterocycle moiety (uracil or quinazoline-2,4-dione) was synthesized. All compounds were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1). Antiviral assays revealed three compounds, 13b, 14b, and 17a, which showed moderate activity against influenza virus A (H1N1) with IC50 values of 17.9 µM, 51 µM, and 25 µM, respectively. In the first two compounds, the quinazoline-2,4-dione moiety is attached via a methylene or a butylene linker, respectively, to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-diphenyl phosphate substituent. In compound 17a, the uracil moiety is attached via the methylene unit to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-(phenyl methoxy-L-alaninyl)phosphate substituent. The remaining compounds appeared to be inactive against influenza virus A/PR/8/34/(H1N1). The results of molecular docking simulations indirectly confirmed the literature data that the inhibition of viral replication is carried out not by nucleoside analogues themselves, but by their 5'-triphosphate derivatives.


Subject(s)
Influenza A Virus, H1N1 Subtype , Organophosphonates , Alkenes , Antiviral Agents/pharmacology , Molecular Docking Simulation , Nucleosides/pharmacology , Phosphates , Quinazolines/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology , Uracil
7.
Bioorg Chem ; 127: 106030, 2022 10.
Article in English | MEDLINE | ID: mdl-35870414

ABSTRACT

Here we report the synthesis, in vitro antimicrobial activity, preliminary toxicity and mechanism study of a new series of 2-(2-hydroxyaryl)alkenylphosphonium salts with the variation of phosphonium moiety obtained by a two-step synthetic method from phosphine oxides. The salts showed pronounced activity against Gram-positive bacteria, including MRSA strains, and some fungi. Mechanism of action against S. aureus was studied by CV test, TEM and proteomic assay. No cell wall integrity loss was observed while proteomic assay results suggested interference in different metabolic processes of S. aureus. For this series, lipophilicity was determined as a key factor for the inhibition of Gram-positive bacteria growth and S. aureus killing. Biological properties of methylated derivatives were notably different with manifested action against Gram-negative bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Salts , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Microbial Sensitivity Tests , Proteomics , Staphylococcus aureus , Structure-Activity Relationship
8.
ACS Appl Mater Interfaces ; 14(17): 19241-19252, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35440137

ABSTRACT

A nanoreactor containing an evolved mutant of Saccharolobus solfataricus phosphotriesterase (L72C/Y97F/Y99F/W263V/I280T) as a catalytic bioscavenger was made for detoxification of organophosphates. This nanoreactor intended for treatment of organophosphate poisoning was studied against paraoxon (POX). Nanoreactors were low polydispersity polymersomes containing a high concentration of enzyme (20 µM). The polyethylene glycol-polypropylene sulfide membrane allowed for penetration of POX and exit of hydrolysis products. In vitro simulations under second order conditions showed that 1 µM enzyme inactivates 5 µM POX in less than 10 s. LD50-shift experiments of POX-challenged mice through intraperitoneal (i.p.) and subcutaneous (s.c.) injections showed that intravenous administration of nanoreactors (1.6 nmol enzyme) protected against 7 × LD50 i.p. in prophylaxis and 3.3 × LD50 i.p. in post-exposure treatment. For mice s.c.-challenged, LD50 shifts were more pronounced: 16.6 × LD50 in prophylaxis and 9.8 × LD50 in post-exposure treatment. Rotarod tests showed that transitory impaired neuromuscular functions of challenged mice were restored the day of experiments. No deterioration was observed in the following days and weeks. The high therapeutic index provided by prophylactic administration of enzyme nanoreactors suggests that no other drugs are needed for protection against acute POX toxicity. For post-exposure treatment, co-administration of classical drugs would certainly have beneficial effects against transient incapacitation.


Subject(s)
Organophosphate Poisoning , Phosphoric Triester Hydrolases , Animals , Mice , Nanotechnology , Organophosphate Poisoning/drug therapy , Organophosphates/toxicity , Paraoxon
9.
ACS Omega ; 6(31): 20676-20685, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34396013

ABSTRACT

Trialkyl phosphonium derivatives of vinyl-substituted p-chlorophenol were synthesized here by a recently developed method of preparing quaternary phosphonium salts from phosphine oxides using Grignard reagents. All the derivatives with a number (n) of carbon atoms in phosphonium alkyl substituents varying from 4 to 7 showed pronounced uncoupling activity in isolated rat liver mitochondria at micromolar concentrations, with a tripentyl derivative being the most effective both in accelerating respiration and causing membrane potential collapse, as well as in provoking mitochondrial swelling in a potassium-acetate medium. Remarkably, the trialkyl phosphonium derivatives with n from 4 to 7 also proved to be rather potent antibacterial agents. Methylation of the chlorophenol hydroxyl group suppressed the effects of P555 and P444 on the respiration and membrane potential of mitochondria but not those of P666, thereby suggesting a mechanistic difference in the mitochondrial uncoupling by these derivatives, which was predominantly protonophoric (carrier-like) in the case of P555 and P444 but detergent-like with P666. The latter was confirmed by the carboxyfluorescein leakage assay on model liposomal membranes.

10.
Bioorg Med Chem Lett ; 30(13): 127234, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32386856

ABSTRACT

Here we report the synthesis and biological evaluation of a series of new 2-hydroxybenzylphosphonium salts (QPS) with antimicrobial and antitumor dual action. The most active compounds exhibit antimicrobial activity at a micromolar level against Gram-positive bacteria Sa (ATCC 209p and clinical isolates), Bc (1-2 µM) and fungi Tm and Ca, and induced no notable hemolysis at MIC. The change in nature of substituents of the same length led to a drastic change of biological activity. Self-assembly behavior of the octadecyl and oleyl derivatives was studied. QPS demonstrated self-assembly within the micromolar range with the formation of nanosized aggregates capable of the solubilizing hydrophobic probe. The synthesized phosphonium salts were tested for cytotoxicity. The most potent salt was active against on M-Hela cell line with IC50 on the level of doxorubicin and good selectivity. According to the cytofluorimetry analysis, the salts induced mitochondria-dependent apoptosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Organophosphorus Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Arthrodermataceae/drug effects , Bacillus cereus/drug effects , Candida albicans/drug effects , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Organophosphorus Compounds/chemical synthesis , Staphylococcus aureus/drug effects
11.
Exp Gerontol ; 135: 110934, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32224222

ABSTRACT

Task switching performance was assessed in a group of healthy young, healthy old, and MCI-diagnosed participants. Highly significant RT-related local switch costs were found in the MCI group. This contrasts the typical finding that in normal aging local switch costs show no age-related deficit. Local switch costs deficits may be a diagnostic tool in differentiating normal and pathological cognitive aging.


Subject(s)
Cognitive Dysfunction , Aging , Cognitive Dysfunction/diagnosis , Humans , Neuropsychological Tests , Reaction Time
12.
Mater Sci Eng C Mater Biol Appl ; 105: 110057, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546380

ABSTRACT

The present work introduces ternary Ln(III) (Ln = Eu, Yb, Lu) complexes with thenoyltriflouro1,3-diketonate (TTA-) and phosphine oxide derivative (PhO) as building blocks for core-shell nanoparticles with both Eu(III)- or Yb(III)-centered luminescence and the dual Eu(III)-Yb(III)-centered luminescence. Solvent-mediated self-assembly of the complexes is presented herein as the procedure for formation of EuLu, EuYb and YbLu heterometallic or homometallic cores coated by hydrophilic polystyrenesulfonate-based shells. Steady state and time resolved Eu-centered luminescence in homolanthanide and heterolanthanide EuLu and EuYb cores is affected by Eu → Eu and Eu → Yb energy transfer due to a close proximity of the lanthanide blocks within the core of nanoparticles. The Eu → Yb energy transfer is highlighted to be the reason for the enhancement of the NIR Yb-centered luminescence. Efficient cellular uptake, low cytotoxicity towards normal and cancer cells, and sensing ability of EuYb nanoparticles on lomefloxacin additives via both red and NIR channels make them promising as cellular imaging agents and sensors.


Subject(s)
Antineoplastic Agents , Cytotoxins , Europium , Luminescence , Metal Nanoparticles , Neoplasms , Ytterbium , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Europium/chemistry , Europium/pharmacology , HeLa Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Ytterbium/pharmacology
13.
Bioconjug Chem ; 30(9): 2435-2443, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31374173

ABSTRACT

2-(2-Hydroxyaryl)alkenylphosphonium salts (here coined as PPR) representing derivatives of quaternary phosphonium with two phenyl (P) and one alkyl (R) substituents linked through alkenyl bridge to substituted phenol were applied here to planar bilayer lipid membranes (BLM), isolated mitochondria, and cell culture. PPR with six carbon atoms in R (PP6) induced proton-selective currents across BLM and caused mitochondrial uncoupling. In particular, PP6 at submicromolar concentrations accelerated respiration, decreased membrane potential, and reduced ATP synthesis in isolated rat liver mitochondria (RLM). Methylation of a hydroxyl group substantially suppressed the protonophoric activity of PP6 on BLM and its uncoupling potency in RLM. Of note, the methylated derivative PP6-OMe was synthesized here via a new synthetic route including cyclization of PP6 with subsequent ring opening. PPR were considered as protonophoric uncouplers of a zwitterionic type, capable of penetrating membranes both as a zwitterion composed of a deprotonated phenol and a cationic quaternary phosphonium, and as a protonated cation. The protonophoric and uncoupling properties of PPR found here were speculated to account for their strong antibacterial activity described previously.


Subject(s)
Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Oxidative Phosphorylation/drug effects , Protons , Adenosine Triphosphate/biosynthesis , Animals , Membrane Potentials/drug effects , Methylation , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Rats
14.
Materials (Basel) ; 12(9)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052172

ABSTRACT

Nickel oxide (NiO) is one of the most promising and high-performing Hole Transporting Layer (HTL) in inverted perovskite solar cells due to ideal band alignment with perovskite absorber, wide band gap, and high mobility of charges. At the same time, however, NiO does not provide good contact and trap-free junction for hole collection. In this paper, we examine this problem by developing a double hole transport configuration with a copper iodide (CuI) interlayer for efficient surface passivation. Transient photo-current (TPC) measurements showed that Perovskite/HTL interface with CuI interlayer has an improved hole injection; CuI passivation reduces the concentration of traps and the parasitic charge accumulation that limits the flow of charges. Moreover, we found that CuI protect the HTL/perovskite interface from degradation and consequently improve the stability of the cell. The presence of CuI interlayer induces an improvement of open-circuit voltage VOC (from 1.02 V to 1.07 V), an increase of the shunt resistance RSH (100%), a reduction of the series resistance RS (-30%), and finally a +10% improvement of the solar cell efficiency.

15.
Anal Chim Acta ; 784: 65-71, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23746410

ABSTRACT

The present work introduces the determination of fluoroquinolone antibiotics (FQs) in aqueous solutions through the fluorescent response of Eu(TTA)3 and [Eu(TTA)(3)1] (TTA(-) and 1 are thenoyltrifluoroacetonate and phosphine oxide derivative) complexes encapsulated into the polyelectrolyte capsules fabricated through layer-by-layer deposition of poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI). The variation of luminescent core, polyelectrolyte deposition and concentration conditions reveals two modes of fluorescent response on FQs of diverse structure namely the sensitization and quenching of Eu(III) centered luminescence. The obtained regularities reveal the ternary complex formation and the ligand exchange occurring at the interface of polyelectrolyte coated [Eu(TTA)(3)1] based colloids as the reasons of the diverse fluorescent response of Eu(III) centered luminescence on FQs. The factors affecting the fluorescent response have been revealed, which are: the content of luminescent core, the mode of polyelectrolyte deposition, concentration and structure of FQs. The discrimination of moxifloxacin and lomefloxacin from levofloxacin, ofloxacin, difloxacin, perfloxacin through the quenching of Eu(III) luminescence in PSS-[Eu(TTA)(3)1] colloids has been revealed.


Subject(s)
Anti-Bacterial Agents/analysis , Biosensing Techniques/methods , Fluoroquinolones/analysis , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Spectrometry, Fluorescence/methods , Biosensing Techniques/instrumentation , Colloids , Coordination Complexes/chemistry , Limit of Detection , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Molecular Structure , Spectrometry, Fluorescence/instrumentation , Surface Properties
16.
Colloids Surf B Biointerfaces ; 88(1): 490-6, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21835599

ABSTRACT

The luminescent colloids have been synthesized through the layer-by-layer assembly of poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI) onto the luminescent core. The latter has been obtained by the reprecipitation of complex Eu[(TTA)(3)1] (where TTA(-) and 1 are thenoyltrifluoroacetonate and 2-(5-chlorophenyl-2-hydroxy)-2-phenylethenyl-bis-(2-methoxyphenyl)phosphine oxide, respectively) from organic solvent to aqueous solution. The variation of Eu(III) complexes indicates the role of the complex core in the development of such core-shell colloids. Complex Eu[(TTA)(3)1] is most convenient precursor of Eu-doped luminescent nanocomposites. The fluorometric measurements at each step of the layer-by-layer polyelectrolyte assembly onto Eu[(TTA)(3)1] core, at various pHs and additives reveal the quenching of Eu-centered luminescence as a result of the interfacial interaction of the core and the dye. The AFM images and electrochemical behavior of PSS-(PEI-PSS)(n)-Eu[(TTA)(3)1] colloids deposited on the surface indicate the stability of the polyelectrolyte multilayer in the dried state.


Subject(s)
Colloids/chemistry , Polymers/chemistry , Colloids/chemical synthesis , Electrochemistry
SELECTION OF CITATIONS
SEARCH DETAIL