Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
Nat Commun ; 14(1): 3294, 2023 06 15.
Article En | MEDLINE | ID: mdl-37322051

Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.


Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli , Escherichia coli Infections/microbiology , Virulence/genetics , Virulence Factors/genetics , Escherichia coli Proteins/genetics , Phylogeny
2.
Front Immunol ; 13: 853690, 2022.
Article En | MEDLINE | ID: mdl-35812377

The complement system is required for innate immunity against Acinetobacter baumannii, an important cause of antibiotic resistant systemic infections. A. baumannii strains differ in their susceptibility to the membrane attack complex (MAC) formed from terminal complement pathway proteins, but the reasons for this variation remain poorly understood. We have characterized in detail the complement sensitivity phenotypes of nine A. baumannii clinical strains and some of the factors that might influence differences between strains. Using A. baumannii laboratory strains and flow cytometry assays, we first reconfirmed that both opsonization with the complement proteins C3b/iC3b and MAC formation were inhibited by the capsule. There were marked differences in C3b/iC3b and MAC binding between the nine clinical A. baumannii strains, but this variation was partially independent of capsule composition or size. Opsonization with C3b/iC3b improved neutrophil phagocytosis of most strains. Importantly, although C3b/iC3b binding and MAC formation on the bacterial surface correlated closely, MAC formation did not correlate with variations between A. baumannii strains in their levels of serum resistance. Genomic analysis identified only limited differences between strains in the distribution of genes required for serum resistance, but RNAseq data identified three complement-resistance genes that were differentially regulated between a MAC resistant and two MAC intermediate resistant strains when cultured in serum. These data demonstrate that clinical A. baumannii strains vary in their sensitivity to different aspects of the complement system, and that the serum resistance phenotype was influenced by factors in addition to the amount of MAC forming on the bacterial surface.


Acinetobacter baumannii , Acinetobacter baumannii/genetics , Complement Activation , Complement C3b/metabolism , Complement Membrane Attack Complex , Complement System Proteins , Phagocytosis
3.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 02.
Article En | MEDLINE | ID: mdl-35455440

Nineteen bacteriophages against five main capsular types of multidrug-resistant Acinetobacter baumannii were isolated from tertiary care hospital sewage. Eight representative phages from each capsular type were characterized and tested for their biological properties. The biological features revealed that phages T1245, T444, and T515 had a large burst size of more than 420 pfu/mL, together with a short latent period lasting less than 6 min, and were readily adsorbed to a bacterial host within 10 min. Moreover, these phages demonstrated host specificity and stability over a broad range of temperatures (-20 to 60 °C) and pH (5.0-9.0). A whole-genome analysis of six lytic and two temperate phages revealed high genomic similarity with double-stranded DNA between 40 and 50 kb and G + C content of 38-39%. The protein compositions disclosed the absence of toxin-coding genes. The phylogenic results, together with morphological micrographs, confirmed that three selected phages (T1245, T444, and T515) belong to the Podoviridae family within the order Caudovirales. The biological data and bioinformatics analysis indicated that these novel A. baumannii phages possess important enzymes, including depolymerase and endolysin, which could be further developed as promising alternative antibacterial agents to control A. baumannii infections.

4.
Methods Mol Biol ; 2377: 199-213, 2022.
Article En | MEDLINE | ID: mdl-34709618

Transposon-directed insertion site sequencing (TraDIS) combines random transposon mutagenesis and massively parallel sequencing to shed light on bacterial gene function on a genome-wide scale and in a high-throughput manner. The technique has proven to be successful in the determination of the fitness contribution of every gene under specific conditions both in vitro and in vivo. In this contribution, we describe the procedure used for the identification of Escherichia coli K1 genes essential for in vitro growth, survival in pooled human serum and gastrointestinal colonisation in a rodent model of neonatal invasive infection. TraDIS has broad application for systems-level analysis of a wide range of pathogenic, commensular and saprophytic bacteria.


Escherichia coli , DNA Transposable Elements/genetics , Escherichia coli/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Mutagenesis, Insertional , Virulence/genetics
5.
Front Immunol ; 12: 705533, 2021.
Article En | MEDLINE | ID: mdl-34394105

Antibody therapy may be an alternative treatment option for infections caused by the multi-drug resistant (MDR) bacterium Acinetobacter baumannii. As A. baumannii has multiple capsular serotypes, a universal antibody therapy would need to target conserved protein antigens rather than the capsular polysaccharides. We have immunized mice with single or multiple A. baumannii strains to induce antibody responses to protein antigens, and then assessed whether these responses provide cross-protection against a collection of genetically diverse clinical A. baumannii isolates. Immunized mice developed antibody responses to multiple protein antigens. Flow cytometry IgG binding assays and immunoblots demonstrated improved recognition of both homologous and heterologous clinical strains in sera from mice immunized with multiple strains compared to a single strain. The capsule partially inhibited bacterial recognition by IgG and the promotion of phagocytosis by human neutrophils. However, after immunization with multiple strains, serum antibodies to protein antigens promoted neutrophil phagocytosis of heterologous A. baumannii strains. In an infection model, mice immunized with multiple strains had lower bacterial counts in the spleen and liver following challenge with a heterologous strain. These data demonstrate that antibodies targeting protein antigens can improve immune recognition and protection against diverse A. baumannii strains, providing support for their use as an antibody therapy.


Acinetobacter baumannii/immunology , Antibodies, Bacterial/immunology , Antibody Formation , Bacterial Vaccines/immunology , Vaccination , Animals , Female , Humans , Mice
6.
Front Cell Infect Microbiol ; 11: 686090, 2021.
Article En | MEDLINE | ID: mdl-34222050

Capsular polysaccharides enable clinically important clones of Klebsiella pneumoniae to cause severe systemic infections in susceptible hosts. Phage-encoded capsule depolymerases have the potential to provide an alternative treatment paradigm in patients when multiple drug resistance has eroded the efficacy of conventional antibiotic chemotherapy. An investigation of 164 K. pneumoniae from intensive care patients in Thailand revealed a large number of distinct K types in low abundance but four (K2, K51, K1, K10) with a frequency of at least 5%. To identify depolymerases with the capacity to degrade capsules associated with these common K-types, 62 lytic phage were isolated from Thai hospital sewage water using K1, K2 and K51 isolates as hosts; phage plaques, without exception, displayed halos indicative of the presence of capsule-degrading enzymes. Phage genomes ranged in size from 41-348 kb with between 50 and 535 predicted coding sequences (CDSs). Using a custom phage protein database we were successful in applying annotation to 30 - 70% (mean = 58%) of these CDSs. The largest genomes, of so-called jumbo phage, carried multiple tRNAs as well as CRISPR repeat and spacer sequences. One of the smaller phage genomes was found to contain a putative Cas type 1E gene, indicating a history of host DNA acquisition in these obligate lytic phage. Whole-genome sequencing (WGS) indicated that some phage displayed an extended host range due to the presence of multiple depolymerase genes; in total, 42 candidate depolymerase genes were identified with up to eight in a single genome. Seven distinct virions were selected for further investigation on the basis of host range, phage morphology and WGS. Candidate genes for K1, K2 and K51 depolymerases were expressed and purified as his6-tagged soluble protein and enzymatic activity demonstrated against K. pneumoniae capsular polysaccharides by gel electrophoresis and Anton-Paar rolling ball viscometry. Depolymerases completely removed the capsule in K-type-specific fashion from K. pneumoniae cells. We conclude that broad-host range phage carry multiple enzymes, each with the capacity to degrade a single K-type, and any future use of these enzymes as therapeutic agents will require enzyme cocktails for utility against a range of K. pneumoniae infections.


Bacteriophages , Klebsiella Infections , Bacterial Capsules , Bacteriophages/genetics , Genome, Viral , Host Specificity , Humans , Klebsiella pneumoniae/genetics , Thailand
7.
Infect Immun ; 88(8)2020 07 21.
Article En | MEDLINE | ID: mdl-32513855

The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. More than 90 genes contributed to resistance in one or more strains, but only three, rfaH, lpp, and arnD, were common to all four strains. Deletion of the antiterminator rfaH, which controls the expression of capsule and O side chains, resulted in dramatic complement resistance reductions in all strains. The murein lipoprotein gene lpp promoted capsule retention through a mechanism dependent on its C-terminal lysine residue; its deletion led to modest reductions in complement resistance. Binding experiments with the complement components C3b and C5b-9 showed that the underlying mechanism of evasion varied in the four strains: B5055 and NTUH-K2044 appeared to bypass recognition by complement entirely, while ATCC 43816 and RH201207 were able to resist killing despite being associated with substantial levels of C5b-9. All rfaH and lpp mutants bound C3b and C5b-9 in large quantities. Our findings show that, even among this small selection of isolates, K. pneumoniae adopts differing mechanisms and utilizes distinct gene sets to avoid complement attack.


Bacterial Outer Membrane Proteins/immunology , Carboxy-Lyases/immunology , Gene Expression Regulation, Bacterial/immunology , Genes, Bacterial , Immune Evasion , Klebsiella pneumoniae/immunology , Peptide Elongation Factors/immunology , Bacterial Outer Membrane Proteins/genetics , Blood Bactericidal Activity/immunology , Carboxy-Lyases/deficiency , Carboxy-Lyases/genetics , Complement C3b/genetics , Complement C3b/immunology , Complement Membrane Attack Complex/genetics , Complement Membrane Attack Complex/immunology , DNA Transposable Elements , Gene Expression Profiling , Gene Library , Humans , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Mutation , Peptide Elongation Factors/deficiency , Peptide Elongation Factors/genetics , Sequence Analysis, DNA
8.
Molecules ; 25(8)2020 Apr 23.
Article En | MEDLINE | ID: mdl-32340372

Green tea-derived galloylated catechins have weak direct antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens and are able to phenotypically transform, at moderate concentrations, methicillin-resistant Staphylococcus aureus (MRSA) clonal pathogens from full ß-lactam resistance (minimum inhibitory concentration 256-512 mg/L) to complete susceptibility (~1 mg/L). Reversible conversion to susceptibility follows intercalation of these compounds into the bacterial cytoplasmic membrane, eliciting dispersal of the proteins associated with continued cell wall peptidoglycan synthesis in the presence of ß-lactam antibiotics. The molecules penetrate deep within the hydrophobic core of the lipid palisade to force a reconfiguration of cytoplasmic membrane architecture. The catechin gallate-induced staphylococcal phenotype is complex, reflecting perturbation of an essential bacterial organelle, and includes prevention and inhibition of biofilm formation, disruption of secretion of virulence-related proteins, dissipation of halotolerance, cell wall thickening and cell aggregation and poor separation of daughter cells during cell division. These features are associated with the reduction of capacity of potential pathogens to cause lethal, difficult-to-treat infections and could, in combination with ß-lactam agents that have lost therapeutic efficacy due to the emergence of antibiotic resistance, form the basis of a new approach to the treatment of staphylococcal infections.


Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Catechin/analogs & derivatives , Tea/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Catechin/chemistry , Catechin/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Microbial Viability/drug effects , Structure-Activity Relationship
9.
Front Microbiol ; 11: 548, 2020.
Article En | MEDLINE | ID: mdl-32328045

Antibiotic resistant strains of Acinetobacter baumannii are responsible for a large and increasing burden of nosocomial infections in Thailand and other countries of Southeast Asia. New approaches to their control and treatment are urgently needed and an attractive strategy is to remove the bacterial polysaccharide capsule, and thus the protection from the host's immune system. To examine phylogenetic relationships, distribution of capsule chemotypes, acquired antibiotic resistance determinants, susceptibility to complement and other traits associated with systemic infection, we sequenced 191 isolates from three tertiary referral hospitals in Thailand and used phenotypic assays to characterize key aspects of infectivity. Several distinct lineages were circulating in three hospitals and the majority belonged to global clonal group 2 (GC2). Very high levels of resistance to carbapenems and other front-line antibiotics were found, as were a number of widespread plasmid replicons. A high diversity of capsule genotypes was encountered, with only three of these (KL6, KL10, and KL47) showing more than 10% frequency. Almost 90% of GC2 isolates belonged to the most common capsule genotypes and were fully resistant to the bactericidal action of human serum complement, most likely protected by their polysaccharide capsule, which represents a key determinant of virulence for systemic infection. Our study further highlights the importance to develop therapeutic strategies to remove the polysaccharide capsule from extensively drug-resistant A. baumanii during the course of systemic infection.

10.
Front Immunol ; 11: 106, 2020.
Article En | MEDLINE | ID: mdl-32117260

Approximately 40% of preterm births are preceded by microbial invasion of the intrauterine space; ascent from the vagina being the most common pathway. Within the cervical canal, antimicrobial peptides and proteins (AMPs) are important components of the cervical barrier which help to prevent ascending vaginal infection. We investigated whether expression of the AMP, human ß-defensin-3 (HBD3), in the cervical mucosa of pregnant mice could prevent bacterial ascent from the vagina into the uterine cavity. An adeno-associated virus vector containing both the HBD3 gene and GFP transgene (AAV8 HBD3.GFP) or control AAV8 GFP, was administered intravaginally into E13.5 pregnant mice. Ascending infection was induced at E16.5 using bioluminescent Escherichia coli (E. coli K1 A192PP-lux2). Bioluminescence imaging showed bacterial ascent into the uterine cavity, inflammatory events that led to premature delivery and a reduction in pups born alive, compared with uninfected controls. Interestingly, a significant reduction in uterine bioluminescence in the AAV8 HBD3.GFP-treated mice was observed 24 h post-E. coli infection, compared to AAV8 GFP treated mice, signifying reduced bacterial ascent in AAV8 HBD3.GFP-treated mice. Furthermore, there was a significant increase in the number of living pups in AAV HBD3.GFP-treated mice. We propose that HBD3 may be a potential candidate for augmenting cervical innate immunity to prevent ascending infection-related preterm birth and its associated neonatal consequences.


Cervix Uteri/immunology , Escherichia coli Infections/immunology , Escherichia coli , Gene Transfer Techniques , Pregnancy Complications, Infectious/immunology , Premature Birth/immunology , Premature Birth/microbiology , Reproductive Tract Infections/immunology , beta-Defensins/genetics , Animals , Animals, Newborn , Cervix Uteri/metabolism , Cervix Uteri/microbiology , Disease Models, Animal , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Female , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Pregnancy , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/prevention & control , Premature Birth/prevention & control , Reproductive Tract Infections/microbiology , Vagina/metabolism , beta-Defensins/metabolism
11.
Infect Immun ; 87(5)2019 03.
Article En | MEDLINE | ID: mdl-30833331

Gastrointestinal (GI) colonization of 2-day-old (P2) rat pups with Escherichia coli K1 results in translocation of the colonizing bacteria across the small intestine, bacteremia, and invasion of the meninges, with animals frequently succumbing to lethal infection. Infection, but not colonization, is strongly age dependent; pups become progressively less susceptible to infection over the P2-to-P9 period. Colonization leads to strong downregulation of the gene encoding trefoil factor 2 (Tff2), preventing maturation of the protective mucus barrier in the small intestine. Trefoil factors promote mucosal homeostasis. We investigated the contribution of Tff2 to protection of the neonatal rat from E. coli K1 bacteremia and tissue invasion. Deletion of tff2, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, sensitized P9 pups to E. coli K1 bacteremia. There were no differences between tff2-/- homozygotes and the wild type with regard to the dynamics of GI colonization. Loss of the capacity to elaborate Tff2 did not impact GI tract integrity or the thickness of the small-intestinal mucus layer but, in contrast to P9 wild-type pups, enabled E. coli K1 bacteria to gain access to epithelial surfaces in the distal region of the small intestine and exploit an intracellular route across the epithelial monolayer to enter the blood circulation via the mesenteric lymphatic system. Although primarily associated with the mammalian gastric mucosa, we conclude that loss of Tff2 in the developing neonatal small intestine enables the opportunistic neonatal pathogen E. coli K1 to enter the compromised mucus layer in the distal small intestine prior to systemic invasion and infection.


Escherichia coli Infections/immunology , Escherichia coli/immunology , Escherichia coli/pathogenicity , Immunity, Innate/immunology , Neonatal Sepsis/immunology , Trefoil Factor-2/immunology , Animals , Animals, Newborn , Disease Models, Animal , Humans , Rats
12.
mSphere ; 3(6)2018 11 07.
Article En | MEDLINE | ID: mdl-30404929

The capacity to resist the bactericidal action of complement (C') is a strong but poorly understood virulence trait in Klebsiella spp. Killing requires activation of one or more C' pathways, assembly of C5b-9 membrane attack complexes (MACs) on the surface of the outer membrane (OM), and penetration of MACs into the target bilayer. We interrogated whole-genome sequences of 164 Klebsiella isolates from three tertiary hospitals in Thailand for genes encoding surface-located macromolecules considered to play a role in determination of C' resistance. Most isolates (154/164) were identified as Klebsiella pneumoniae, and the collection conformed to previously established population structures and antibiotic resistance patterns. The distribution of sequence types (STs) and capsular (K) types were also typical of global populations. The majority (64%) of isolates were resistant to C', and the remainder were either rapidly or slowly killed. All isolates carried genes encoding capsular polysaccharides (K antigens), which have been strongly linked to C' resistance. In contrast to previous reports, there were no differences in the amount of capsule produced by C'-resistant isolates compared to C'-susceptible isolates, nor was there any correlation between serum reactivity and the presence of hypermucoviscous capsules. Similarly, there were no correlations between the presence of genes specifying lipopolysaccharide O-side chains or major OM proteins. Some virulence factors were found more frequently in C'-resistant isolates but were considered to reflect clonal ST expansion. Thus, no single gene accounts for the C' resistance of the isolates sequenced in this study.IMPORTANCE Multidrug-resistant Klebsiella pneumoniae is responsible for an increasing proportion of nosocomial infections, and emerging hypervirulent K. pneumoniae clones now cause severe community-acquired infections in otherwise healthy individuals. These bacteria are adept at circumventing immune defenses, and most survive and grow in serum; their capacity to avoid C'-mediated destruction is correlated with their invasive potential. Killing of Gram-negative bacteria occurs following activation of the C' cascades and stable deposition of C5b-9 MACs onto the OM. For Klebsiella, studies with mutants and conjugants have invoked capsules, lipopolysaccharide O-side chains, and OM proteins as determinants of C' resistance, although the precise roles of the macromolecules are unclear. In this study, we sequenced 164 Klebsiella isolates with different C' susceptibilities to identify genes involved in resistance. We conclude that no single OM constituent can account for resistance, which is likely to depend on biophysical properties of the target bilayer.


Complement System Proteins/immunology , Genome, Bacterial , Immunologic Factors/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/immunology , Antigens, Bacterial/genetics , Antigens, Surface/genetics , Humans , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/physiology , Microbial Viability/drug effects , Tertiary Care Centers , Thailand , Whole Genome Sequencing
13.
Am J Pathol ; 188(10): 2164-2176, 2018 10.
Article En | MEDLINE | ID: mdl-30036519

Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of age. At least 40% of cases are associated with infection. The most common way for pathogens to access the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12 MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-buffered saline controls. However, in both groups of viable pups born after bacterial inoculation, there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic inflammation in neonates.


Brain Injuries/microbiology , Premature Birth/microbiology , Vaginal Diseases/microbiology , Animals , Animals, Newborn , Chorioamnionitis/microbiology , Disease Models, Animal , Escherichia coli Infections/physiopathology , Female , Fetal Diseases/microbiology , Mice , Pregnancy , Pregnancy Complications, Infectious/microbiology
14.
Future Microbiol ; 13: 897-901, 2018 06 01.
Article En | MEDLINE | ID: mdl-29877113

Recently developed 3D noninvasive in vivo optical imaging is providing fresh insights into the understanding of the pathogenesis of invasive bacteria in small animal experimental models. Here, we describe the advantages of 3D diffuse light imaging tomography with integrated micro-computed tomography (DLIT-µCT) over more traditional 2D systems, in particular with regard to precise localization of infectious foci within tissues in 3D space. We highlight data from rodent studies that employ experimental infections replicating the course of naturally occurring bacterial disease, such as invasive Escherichia coli infections that arise following colonization of the GI tract in neonatal rats. It is argued that this technology will find increasing utility in the study and diagnosis of infectious disease.


Escherichia coli Infections/diagnosis , Escherichia coli/physiology , Gastrointestinal Tract/microbiology , Imaging, Three-Dimensional/methods , X-Ray Microtomography/methods , Animals , Disease Models, Animal , Escherichia coli Infections/diagnostic imaging , Escherichia coli Infections/microbiology , Humans , Mice , Rats
15.
J Bacteriol ; 200(7)2018 04 01.
Article En | MEDLINE | ID: mdl-29339415

Escherichia coli K1 strains are major causative agents of invasive disease of newborn infants. The age dependency of infection can be reproduced in neonatal rats. Colonization of the small intestine following oral administration of K1 bacteria leads rapidly to invasion of the blood circulation; bacteria that avoid capture by the mesenteric lymphatic system and evade antibacterial mechanisms in the blood may disseminate to cause organ-specific infections such as meningitis. Some E. coli K1 surface constituents, in particular the polysialic acid capsule, are known to contribute to invasive potential, but a comprehensive picture of the factors that determine the fully virulent phenotype has not emerged so far. We constructed a library and constituent sublibraries of ∼775,000 Tn5 transposon mutants of E. coli K1 strain A192PP and employed transposon-directed insertion site sequencing (TraDIS) to identify genes required for fitness for infection of 2-day-old rats. Transposon insertions were lacking in 357 genes following recovery on selective agar; these genes were considered essential for growth in nutrient-replete medium. Colonization of the midsection of the small intestine was facilitated by 167 E. coli K1 gene products. Restricted bacterial translocation across epithelial barriers precluded TraDIS analysis of gut-to-blood and blood-to-brain transits; 97 genes were required for survival in human serum. This study revealed that a large number of bacterial genes, many of which were not previously associated with systemic E. coli K1 infection, are required to realize full invasive potential.IMPORTANCEEscherichia coli K1 strains cause life-threatening infections in newborn infants. They are acquired from the mother at birth and colonize the small intestine, from where they invade the blood and central nervous system. It is difficult to obtain information from acutely ill patients that sheds light on physiological and bacterial factors determining invasive disease. Key aspects of naturally occurring age-dependent human infection can be reproduced in neonatal rats. Here, we employ transposon-directed insertion site sequencing to identify genes essential for the in vitro growth of E. coli K1 and genes that contribute to the colonization of susceptible rats. The presence of bottlenecks to invasion of the blood and cerebrospinal compartments precluded insertion site sequencing analysis, but we identified genes for survival in serum.


Antigens, Bacterial/genetics , DNA Transposable Elements , Escherichia coli Infections/blood , Escherichia coli/genetics , Gastrointestinal Tract/microbiology , Genome, Bacterial , Polysaccharides, Bacterial/genetics , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Female , Genetic Fitness , Humans , Microbial Viability/drug effects , Mutagenesis , Mutation , Rats , Rats, Wistar , Serum/microbiology , Virulence/genetics
16.
NPJ Microgravity ; 3: 23, 2017.
Article En | MEDLINE | ID: mdl-28894789

Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome.

17.
Methods ; 127: 62-68, 2017 08 15.
Article En | MEDLINE | ID: mdl-28522324

In contrast to two-dimensional bioluminescence imaging, three dimensional diffuse light imaging tomography with integrated micro-computed tomography (DLIT-µCT) has the potential to realise spatial variations in infection patterns when imaging experimental animals dosed with derivatives of virulent bacteria carrying bioluminescent reporter genes such as the lux operon from the bacterium Photorhabdus luminescens. The method provides an opportunity to precisely localise the bacterial infection sites within the animal and enables the generation of four-dimensional movies of the infection cycle. Here, we describe the use of the PerkinElmer IVIS SpectrumCT in vivo imaging system to investigate progression of lethal systemic infection in neonatal rats following colonisation of the gastrointestinal tract with the neonatal pathogen Escherichia coli K1. We confirm previous observations that these bacteria stably colonize the colon and small intestine following feeding of the infectious dose from a micropipette; invading bacteria migrate across the gut epithelium into the blood circulation and establish foci of infection in major organs, including the brain. DLIT-µCT revealed novel multiple sites of colonisation within the alimentary canal, including the tongue, oesophagus and stomach, with penetration of the non-keratinised oesophageal epithelial surface, providing strong evidence of a further major site for bacterial dissemination. We highlight technical issues associated with imaging of infections in new born rat pups and show that the whole-body and organ bioburden correlates with disease severity.


Disease Models, Animal , Escherichia coli Infections/pathology , Imaging, Three-Dimensional/methods , Sepsis/pathology , Age Factors , Animals , Animals, Newborn , Disease Progression , Genes, Reporter , Luminescent Measurements/methods , Microorganisms, Genetically-Modified/genetics , Rats , Tomography, Optical/methods , X-Ray Microtomography/methods
18.
Sci Rep ; 7(1): 83, 2017 03 06.
Article En | MEDLINE | ID: mdl-28250440

The strong age dependency of neonatal systemic infection with Escherichia coli K1 can be replicated in the neonatal rat. Gastrointestinal (GI) colonization of two-day-old (P2) rats leads to invasion of the blood within 48 h of initiation of colonization; pups become progressively less susceptible to infection over the P2-P9 period. We show that, in animals colonized at P2 but not at P9, E. coli K1 bacteria gain access to the enterocyte surface in the mid-region of the small intestine and translocate through the epithelial cell monolayer by an intracellular pathway to the submucosa. In this region of the GI tract, the protective mucus barrier is poorly developed but matures to full thickness over P2-P9, coincident with the development of resistance to invasion. At P9, E. coli K1 bacteria are physically separated from villi by the mucus layer and their numbers controlled by mucus-embedded antimicrobial peptides, preventing invasion of host tissues.


Escherichia coli Infections/microbiology , Escherichia coli/physiology , Intestinal Mucosa/growth & development , Intestine, Small/cytology , Animals , Animals, Newborn , Blood/microbiology , Cells, Cultured , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestine, Small/growth & development , Intestine, Small/microbiology , Organ Specificity , Paneth Cells/cytology , Paneth Cells/microbiology , Rats
19.
Emerg Top Life Sci ; 1(1): 85-92, 2017 Apr 21.
Article En | MEDLINE | ID: mdl-33525811

The relentless increase in antibiotic resistance among all major groups of bacterial pathogens shows no sign of abating. The situation is exacerbated by a marked decline in the number of new antibiotics entering the marketplace. It is essential that new ways to treat severe bacterial infections are investigated before the antibiotic well runs dry. This review covers many promising approaches, some novel and some based on old ideas that were not considered viable when clinicians were able to exploit a wide palette of cheap and effective antibacterial chemotherapeutics. These approaches include the use of photosensitive dyes, bacteriophage and phage-encoded proteins, and agents that compromise virulence and antibiotic-resistance machineries. I also make a case for continuing in some form with tried and trusted platforms for drug discovery that served society well in the past.

20.
PLoS One ; 11(11): e0166793, 2016.
Article En | MEDLINE | ID: mdl-27861552

Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2-6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation.


Escherichia coli Infections/microbiology , Escherichia coli/genetics , Mutation , Animals , Animals, Newborn , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Gastrointestinal Tract/microbiology , Genome, Bacterial , Genomics , Humans , Phylogeny , Proteomics/methods , Rats , Virulence/genetics
...