Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083479

ABSTRACT

Goal of this work is to show how the developmental conditions of in vitro neuronal networks influence the effect of drug delivery. The proposed experimental neuronal model consists of dissociated cortical neurons plated to Micro-Electrode Arrays (MEAs) and grown according to different conditions (i.e., by varying both the adopted culture medium and the number of days needed to let the network grow before performing the chemical modulation). We delivered rising amount of bicuculline (BIC), a competitive antagonist of GABAA receptors, and we computed the firing rate dose-response curve for each culture. We found that networks matured in BrainPhys for 18 days in vitro exhibited a decreasing firing trend as a function of the BIC concentration, quantified by an average IC50 (i.e., half maximal inhibitory concentration) of 4.64 ± 4.02 µM. On the other hand, both cultures grown in the same medium for 11 days, and ones matured in Neurobasal for 18 days displayed an increasing firing rate when rising amounts of BIC were delivered, characterized by average EC50 values (i.e., half maximal excitatory concentration) of 0.24 ± 0.05 µM and 0.59 ± 0.46 µM, respectively.Clinical Relevance- This research proves the relevance of the experimental factors that can influence the network development as key variables when developing a neuronal model to conduct drug delivery in vitro, simulating the in vivo environment. Our findings suggest that not considering the consequences of the chosen growing conditions when performing in vitro pharmacological studies could lead to incomplete predictions of the chemically induced alterations.


Subject(s)
Neurons , Bicuculline/pharmacology , Neurons/physiology , Electrodes
2.
Article in English | MEDLINE | ID: mdl-38083594

ABSTRACT

Three-dimensionality has been proven extensively to be critical in the development of a reliable model for different anatomical compartments and for many diseases. Currently, we can produce implantable structures that help in the regeneration of different tissues such as bone and heart. Different is the situation when we consider the neuronal compartment. As it is still difficult to understand exactly how the brain computes, to conceive how the complex chain of neuronal events can generate conscious behavior, a comprehensive and workable model of neuronal tissue still has to be found. In this perspective, in the present work, we developed and compared different 3D scaffolds to understand the effects produced by the mechanical and material properties of four different scaffolds on a 3D neuronal network. To help in preclinical testing procedure, the scalability and ease-of-use of the different approaches were also taken into consideration.Clinical Relevance- By comparing different 3D scaffolds for the creation of neuronal constructs, the results in this paper move towards understanding the best strategy to develop functional 3D neuronal units for reliable pre-clinical studies.


Subject(s)
Bone and Bones , Tissue Scaffolds , Tissue Scaffolds/chemistry , Neurons
3.
Front Cell Neurosci ; 17: 1147381, 2023.
Article in English | MEDLINE | ID: mdl-37020847

ABSTRACT

Introduction: The goal of this work is to prove the relevance of the experimental model (in vitro neuronal networks in this study) when drug-delivery testing is performed. Methods: We used dissociated cortical and hippocampal neurons coupled to Micro-Electrode Arrays (MEAs) arranged in different configurations characterized by modularity (i.e., the presence of interconnected sub-networks) and heterogeneity (i.e., the co-existence of neurons coming from brain districts). We delivered increasing concentrations of bicuculline (BIC), a neuromodulator acting on the GABAergic system, and we extracted the IC50 values (i.e., the effective concentration yielding a reduction in the response by 50%) of the mean firing rate for each configuration. Results: We found significant lower values of the IC50 computed for modular cortical-hippocampal ensembles than isolated cortical or hippocampal ones. Discussion: Although tested with a specific neuromodulator, this work aims at proving the relevance of ad hoc experimental models to perform neuropharmacological experiments to avoid errors of overestimation/underestimation leading to biased information in the characterization of the effects of a drug on neuronal networks.

4.
Front Bioeng Biotechnol ; 10: 945575, 2022.
Article in English | MEDLINE | ID: mdl-35992349

ABSTRACT

In vitro electrogenic cells monitoring is an important objective in several scientific and technological fields, such as electrophysiology, pharmacology and brain machine interfaces, and can represent an interesting opportunity in other translational medicine applications. One of the key aspects of cellular cultures is the complexity of their behavior, due to the different kinds of bio-related signals, both chemical and electrical, that characterize these systems. In order to fully understand and exploit this extraordinary complexity, specific devices and tools are needed. However, at the moment this important scientific field is characterized by the lack of easy-to-use, low-cost devices for the sensing of multiple cellular parameters. To the aim of providing a simple and integrated approach for the study of in vitro electrogenic cultures, we present here a new solution for the monitoring of both the electrical and the metabolic cellular activity. In particular, we show here how a particular device called Micro Organic Charge Modulated Array (MOA) can be conveniently engineered and then used to simultaneously record the complete cell activity using the same device architecture. The system has been tested using primary cardiac rat myocytes and allowed to detect the metabolic and electrical variations thar occur upon the administration of different drugs. This first example could lay the basis for the development of a new generation of multi-sensing tools that can help to efficiently probe the multifaceted in vitro environment.

5.
Cereb Cortex ; 32(9): 1866-1881, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34535794

ABSTRACT

The brain is a complex organ composed of billions of neurons connected through excitatory and inhibitory synapses. Its structure reveals a modular topological organization, where neurons are arranged in interconnected assemblies. The generated patterns of electrophysiological activity are shaped by two main factors: network heterogeneity and the topological properties of the underlying connectivity that strongly push the dynamics toward different brain-states. In this work, we exploited an innovative polymeric structure coupled to Micro-Electrode Arrays (MEAs) to recreate in vitro heterogeneous interconnected (modular) neuronal networks made up of cortical and hippocampal neurons. We investigated the propagation of spike sequences between the two interconnected subpopulations during the networks' development, correlating functional and structural connectivity to dynamics. The simultaneous presence of two neuronal types shaped the features of the functional connections (excitation vs. inhibition), orchestrating the emerging patterns of electrophysiological activity. In particular, we found that hippocampal neurons mostly project inhibitory connections toward the cortical counterpart modulating the temporal scale of the population events (network bursts). In contrast, cortical neurons establish a larger amount of intrapopulation connections. Moreover, we proved topological properties such as small-worldness, degree distribution, and modularity of neuronal assemblies were favored by the physical environment where networks developed and matured.


Subject(s)
Electrophysiological Phenomena , Hippocampus , Brain , Nerve Net/physiology , Neurons/physiology , Synapses
6.
Biomolecules ; 13(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36671459

ABSTRACT

The creatine precursor Guanidinoacetic Acid (GAA) accumulates in the genetic deficiency of the GuanidinoAcetate Methyl Transferase (GAMT) enzyme and it is believed to cause the seizures that often occur in this condition. However, evidence that it is indeed epileptogenic is scarce and we previously found that it does not cause neuronal hyperexcitation in in vitro brain slices. Here, we used Micro-Electrode Arrays (MEAs) to further investigate the electrophysiological effects of its acute and chronic administration in the networks of cultured neurons, either neocortical or hippocampal. We found that: (1) GAA at the 1 µM concentration, comparable to its concentration in normal cerebrospinal fluid, does not modify any of the parameters we investigated in either neuronal type; (2) at the 10 µM concentration, very similar to that found in the GAMT deficiency, it did not affect any of the parameters we tested except the bursting rate of neocortical networks and the burst duration of hippocampal networks, both of which were decreased, a change pointing in a direction opposite to epileptogenesis; (3) at the very high and unphysiological 100 µM concentration, it caused a decrease in all parameters, a change that again goes in the direction opposite to epileptogenesis. Our results confirm that GAA is not epileptogenic.


Subject(s)
Creatine , Language Development Disorders , Humans , Neurons , Brain , Language Development Disorders/genetics
7.
Materials (Basel) ; 14(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34361325

ABSTRACT

We have developed a novel experimental set-up that simultaneously, (i) applies static and dynamic deformations to adherent cells in culture, (ii) allows the visualization of cells under fluorescence microscopy, and (iii) allows atomic force microscopy nanoindentation measurements of the mechanical properties of the cells. The cell stretcher device relies on a dielectric elastomer film that can be electro-actuated and acts as the cell culture substrate. The shape and position of the electrodes actuating the film can be controlled by design in order to obtain specific deformations across the cell culture chamber. By using optical markers we characterized the strain fields under different electrode configurations and applied potentials. The combined setup, which includes the cell stretcher device, an atomic force microscope, and an inverted optical microscope, can assess in situ and with sub-micron spatial resolution single cell topography and elasticity, as well as ion fluxes, during the application of static deformations. Proof of performance on fibroblasts shows a reproducible increase in the average cell elastic modulus as a response to applied uniaxial stretch of just 4%. Additionally, high resolution topography and elasticity maps on a single fibroblast can be acquired while the cell is deformed, providing evidence of long-term instrumental stability. This study provides a proof-of-concept of a novel platform that allows in situ and real time investigation of single cell mechano-transduction phenomena with sub-cellular spatial resolution.

8.
J Neural Eng ; 17(5): 056044, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33045687

ABSTRACT

OBJECTIVE: The goal of this work is to develop and characterize an innovative experimental framework to design interconnected (i.e. modular) heterogeneous (cortical-hippocampal) neuronal cultures with a three-dimensional (3D) connectivity and to record their electrophysiological activity using micro-electrode arrays (MEAs). APPROACH: A two-compartment polymeric mask for the segregation of different neuronal populations (cortex and hippocampus) was coupled to the MEA surface. Glass microbeads were used as a scaffold to mimic the 3D brain micro-architecture. MAIN RESULTS: We built a fully functional heterogeneous 3D neuronal network. From an electrophysiological point of view, we found that the heterogeneity induces a global increase of the activity rate, while the 3D connectivity modulates the duration and the organization of the bursting activity. SIGNIFICANCE: In vivo, studies of network dynamics and interactions between neuronal populations are often time-consuming, low-throughput, complex, and suffer from reproducibility. On the other hand, most of the commonly used in vitro brain models are too simplified and thus far from the in vivo situation. The achieved results demonstrate the feasibility to build a more realistic and controllable experimental in vitro model of interconnected brain regions on-a-chip whose applications may have impacts on the study of neurological disorders that impair the connectivity between brain areas (e.g. Parkinson disease).


Subject(s)
Hippocampus , Nerve Net , Electrophysiological Phenomena , Neurons , Reproducibility of Results
9.
Front Pharmacol ; 10: 1452, 2019.
Article in English | MEDLINE | ID: mdl-31849688

ABSTRACT

It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or long-distance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.

10.
iScience ; 19: 402-414, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31421595

ABSTRACT

Recent advances in bioelectronics and neural engineering allowed the development of brain machine interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic computing systems are envisaged as the core of next-generation systems for brain repair. We demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions between two neuronal populations, even when one is damaged or missing. We used in vitro modular cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for bidirectional bridging to artificially reconnect two disconnected neuronal modules and for hybrid bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of neuromorphic-based devices in bioelectrical therapeutics for health care.

11.
Adv Neurobiol ; 22: 155-167, 2019.
Article in English | MEDLINE | ID: mdl-31073935

ABSTRACT

Since their introduction in the early 1970s, microelectrode arrays (MEAs) have been dominating the electrophysiology market thanks to their reliability, extreme robustness, and usability. Over the past 40 years, silicon technology has also played a role in the advancement of the field, and CMOS-based in vitro and in vivo systems are now able to achieve unprecedented spatial resolutions, giving the possibility to unveil hidden behavior of cellular aggregates down to the subcellular level. However, both the MEAs and silicon-based electronic devices present unavoidable problems such as their expensiveness, the usual rigidity of the employed materials, and the need of an (usually bulky) external reference electrode. Possible interesting alternatives to these incredibly useful devices unexpectedly lie in the field of organic electronics, thanks to the fast-growing pace of improvement that this discipline has undergone in the last 10-15 years. In this chapter, a particular organic transistor called organic charge-modulated field-effect transistor (OCMFET) will be presented as a promising bio-electronic interface, and a complete description of its employment as a detector of cellular electrical activity and as an ultrasensitive pH sensor will be provided, together with the discussion about the possibility of using such a device as an innovative multisensing tool for both electrophysiology and (neuro)pharmacology.


Subject(s)
Electrophysiology/instrumentation , Electrophysiology/methods , Microelectrodes , Neurons/cytology , Cell Culture Techniques , Electrophysiology/standards , Microelectrodes/standards , Reproducibility of Results
12.
Methods Mol Biol ; 1886: 355-367, 2019.
Article in English | MEDLINE | ID: mdl-30374879

ABSTRACT

The cardiac excitation-contraction coupling is the cellular process through which the heart absolves its blood pumping function, and it is directly affected when cardiac pathologies occur. Cardiomyocytes are the functional units in which this complex biomolecular process takes place: they can be represented as a two-stage electro-chemo and chemo-mechanical transducer, along which each stage can be probed and monitored via appropriate micro/nanotechnology-based tools. Atomic force microscopy (AFM), with its unique nanoresolved force sensitivity and versatile modes of extracting sample properties, can represent a key instrument to study time-dependent heart mechanics and topography at the single cell level. In this work, we show how the integrative possibilities of AFM allowed us to implement an in vitro system which can monitor cardiac electrophysiology, intracellular calcium dynamics, and single cell mechanics. We believe this single cell-sensitive and integrated system will unlock improved, fast, and reliable cardiac in vitro tests in the future.


Subject(s)
Electrophysiological Phenomena , Excitation Contraction Coupling , Mechanical Phenomena , Microscopy, Atomic Force , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Calcium Signaling , Data Analysis , Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Molecular Imaging
13.
J Neural Eng ; 15(3): 036016, 2018 06.
Article in English | MEDLINE | ID: mdl-29235438

ABSTRACT

OBJECTIVE: We aim to develop a novel non-invasive or minimally invasive method for neural stimulation to be applied in the study and treatment of brain (dys)functions and neurological disorders. APPROACH: We investigate the electrophysiological response of in vitro neuronal networks when subjected to low-intensity pulsed acoustic stimulation, mediated by piezoelectric nanoparticles adsorbed on the neuronal membrane. MAIN RESULTS: We show that the presence of piezoelectric barium titanate nanoparticles induces, in a reproducible way, an increase in network activity when excited by stationary ultrasound waves in the MHz regime. Such a response can be fully recovered when switching the ultrasound pulse off, depending on the generated pressure field amplitude, whilst it is insensitive to the duration of the ultrasound pulse in the range 0.5 s-1.5 s. We demonstrate that the presence of piezoelectric nanoparticles is necessary, and when applying the same acoustic stimulation to neuronal cultures without nanoparticles or with non-piezoelectric nanoparticles with the same size distribution, no network response is observed. SIGNIFICANCE: We believe that our results open up an extremely interesting approach when coupled with suitable functionalization strategies of the nanoparticles in order to address specific neurons and/or brain areas and applied in vivo, thus enabling remote, non-invasive, and highly selective modulation of the activity of neuronal subpopulations of the central nervous system of mammalians.


Subject(s)
Acoustic Stimulation/methods , Action Potentials/physiology , Cerebral Cortex/physiology , Hippocampus/physiology , Nanoparticles/administration & dosage , Action Potentials/drug effects , Animals , Cerebral Cortex/drug effects , Hippocampus/drug effects , Nanoparticles/chemistry , Rats
14.
Sci Rep ; 5: 37504, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27874066

ABSTRACT

Studies in vitro have demonstrated that ß3-adrenergic receptors (ß3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of ß3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking ß3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases.


Subject(s)
Adrenergic beta-3 Receptor Agonists/pharmacology , Dioxoles/pharmacology , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Adrenergic beta-3 Receptor Agonists/administration & dosage , Animals , Dioxoles/administration & dosage , Gene Expression Regulation , Hypertrophy , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Nitric Oxide Synthase Type I/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
15.
J Vis Exp ; (105): e53080, 2015 Oct 18.
Article in English | MEDLINE | ID: mdl-26554533

ABSTRACT

Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks.


Subject(s)
Microelectrodes , Neurons/physiology , Animals , Female , Glass/chemistry , Hippocampus/cytology , Hippocampus/physiology , Microspheres , Models, Theoretical , Neurons/cytology , Rats , Tissue Engineering , Tissue Scaffolds
16.
Sci Rep ; 4: 5489, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24976386

ABSTRACT

Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.


Subject(s)
Brain/physiology , Cell Culture Techniques/methods , Electrophysiology/methods , Hippocampus/physiology , Microelectrodes , Models, Theoretical , Nerve Net/physiology , Action Potentials , Animals , Brain/cytology , Cell Communication , Electric Stimulation/instrumentation , Electric Stimulation/methods , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Hippocampus/cytology , Imaging, Three-Dimensional , Immunoenzyme Techniques , Microarray Analysis/instrumentation , Nerve Net/cytology , Rats , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-23503997

ABSTRACT

Brain-machine interfaces (BMI) were born to control "actions from thoughts" in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI-a neuromorphic chip for brain repair-to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary "bottom-up" approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of "finite size networks" which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented.


Subject(s)
Action Potentials/physiology , Brain-Computer Interfaces , Brain/physiology , Nerve Net/physiology , Animals , Brain/cytology , Cells, Cultured , Guinea Pigs , Nerve Net/cytology
18.
J Neural Eng ; 9(3): 036010, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22614532

ABSTRACT

Co-cultures containing dissociated cortical and thalamic cells may provide a unique model for understanding the pathophysiology in the respective neuronal sub-circuitry. In addition, developing an in vitro dissociated co-culture model offers the possibility of studying the system without influence from other neuronal sub-populations. Here we demonstrate a dual compartment system coupled to microelectrode arrays (MEAs) for co-culturing and recording spontaneous activities from neuronal sub-populations. Propagation of electrical activities between cortical and thalamic regions and their interdependence in connectivity is verified by means of a cross-correlation algorithm. We found that burst events originate in the cortical region and drive the entire cortical-thalamic network bursting behavior while mutually weak thalamic connections play a relevant role in sustaining longer burst events in cortical cells. To support these experimental findings, a neuronal network model was developed and used to investigate the interplay between network dynamics and connectivity in the cortical-thalamic system.


Subject(s)
Cerebral Cortex/physiology , Nerve Net/physiology , Neural Pathways/physiology , Thalamus/physiology , Algorithms , Animals , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Computer Simulation , Data Interpretation, Statistical , Electrophysiological Phenomena , Female , Microelectrodes , Models, Neurological , Neurons/physiology , Pregnancy , Rats , Rats, Wistar , Thalamus/cytology
19.
J Neurosci Methods ; 207(2): 161-71, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22516778

ABSTRACT

We used electrophysiological signals recorded by CMOS Micro Electrode Arrays (MEAs) at high spatial resolution to estimate the functional-effective connectivity of sparse hippocampal neuronal networks in vitro by applying a cross-correlation (CC) based method and ad hoc developed spatio-temporal filtering. Low-density cultures were recorded by a recently introduced CMOS-MEA device providing simultaneous multi-site acquisition at high-spatial (21 µm inter-electrode separation) as well as high-temporal resolution (8 kHz per channel). The method is applied to estimate functional connections in different cultures and it is refined by applying spatio-temporal filters that allow pruning of those functional connections not compatible with signal propagation. This approach permits to discriminate between possible causal influence and spurious co-activation, and to obtain detailed maps down to cellular resolution. Further, a thorough analysis of the links strength and time delays (i.e., amplitude and peak position of the CC function) allows characterizing the inferred interconnected networks and supports a possible discrimination of fast mono-synaptic propagations, and slow poly-synaptic pathways. By focusing on specific regions of interest we could observe and analyze microcircuits involving connections among a few cells. Finally, the use of the high-density MEA with low density cultures analyzed with the proposed approach enables to compare the inferred effective links with the network structure obtained by staining procedures.


Subject(s)
Cell Count/methods , Hippocampus/cytology , Hippocampus/physiology , Nerve Net/cytology , Nerve Net/physiology , Neurons/physiology , Animals , Cell Count/instrumentation , Cells, Cultured , Microelectrodes , Neurons/cytology , Rats , Time Factors
20.
Neurotoxicol Teratol ; 34(1): 116-27, 2012.
Article in English | MEDLINE | ID: mdl-21856414

ABSTRACT

In vitro neuronal cultures exhibit spontaneous electrophysiological activity that can be modulated by chemical stimulation and can be monitored over time by using Micro-Electrode Arrays (MEAs), devices composed by a glass substrate and metal electrodes. Dissociated networks respond to transmitters, their blockers and many other pharmacological substances, including neurotoxic compounds. In this paper we present results related to the effects, both acute (i.e. 1 hour after the treatment) and chronic (3 days after the treatment), of increasing glutamatergic transmission induced by the application of rising concentrations of glutamate and its agonists (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid - AMPA, N-methyl-D-aspartate - NMDA and AMPA together with cyclothiazide - CTZ). Increase of available glutamate was obtained in two ways: 1) by direct application of exogenous glutamate and 2) by inhibiting the clearance of the endogenously released glutamate through DL-threo-ß-benzyloxyaspartate (TBOA). Our findings show that fine modulations (i.e. low concentrations of drug) of the excitatory synaptic transmission are reflected in the electrophysiological activation of the network, while intervention leading to excessive direct stimulation of glutamatergic pathways (i.e. medium and high concentrations of drug) results in the abolishment of the electrophysiological activity and eventually cell death. The results obtained by means of the MEA recordings have been compared to the analysis of cell viability to confirm the excitotoxic effect of the applied drug. In conclusion, our study demonstrates that MEA-coupled cortical networks are very sensitive to pharmacological manipulation of the excitatory ionotropic glutamatergic transmission and might provide sensitive endpoints to detect acute and chronic neurotoxic effects of chemicals and drugs for predictive toxicity testing.


Subject(s)
Cerebral Cortex/physiopathology , Electrophysiology/methods , Microelectrodes/standards , Neurotoxicity Syndromes/physiopathology , Neurotoxins/toxicity , Primary Cell Culture/methods , Toxicology/methods , Animals , Cerebral Cortex/drug effects , Electrophysiology/instrumentation , Female , Neurotoxicity Syndromes/diagnosis , Predictive Value of Tests , Pregnancy , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity , Toxicology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...