Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 5563, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448501

ABSTRACT

Byproducts from the sugarcane manufacturing process, specifically sugarcane molasses (SM) and sugarcane bagasse (SB), can be used as alternative raw materials for sorbitol production via the biological fermentation process. This study investigated the production of sorbitol from SM and sugarcane bagasse hydrolysate (SBH) using a thermally adapted Zymomonas mobilis ZM AD41. Various combinations of SM and SBH on sorbitol production using batch fermentation process were tested. The results revealed that SM alone (FM1) or a mixture of SM and SBH at a ratio of 3:1 (FM2) based on the sugar mass in the raw material proved to be the best condition for sorbitol production by ZM AD41 at 37 °C. Further optimization conditions for sorbitol production revealed that a sugar concentration of 200 g/L and a CaCl2 concentration of 5.0 g/L yielded the highest sorbitol content. The maximum sorbitol concentrations produced by ZM AD41 in the fermentation medium containing SM (FM1) or a mixture of SM and SBH (FM2) were 31.23 and 30.45 g/L, respectively, comparable to those reported in the literature using sucrose or a mixture of sucrose and maltose as feedstock. These results suggested that SBH could be used as an alternative feedstock to supplement or blend with SM for sustainable sorbitol production. In addition, the fermentation conditions established in this study could also be applied to large-scale sorbitol production. Moreover, the thermally adapted Z. mobilis ZM AD41 is also a promising sorbitol-producing bacterium for large-scale production at a relatively high fermentation temperature using agricultural byproducts, specifically SM and SB, as feedstock, which could reduce the operating cost due to minimizing the energy required for the cooling system.


Subject(s)
Saccharum , Zymomonas , Cellulose , Sorbitol , Molasses , Maltose , Sucrose
2.
Sci Rep ; 13(1): 21000, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017261

ABSTRACT

Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.


Subject(s)
Acetic Acid , Saccharum , Cellulose/metabolism , Ethanol , Saccharomyces cerevisiae/metabolism , Biomass , Furaldehyde , Saccharum/metabolism , Fermentation
3.
Sci Rep ; 13(1): 7859, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188725

ABSTRACT

Several raw materials have been used as partial supplements or entire replacements for the main ingredients of kombucha to improve the biological properties of the resulting kombucha beverage. This study used pineapple peels and cores (PPC), byproducts of pineapple processing, as alternative raw materials instead of sugar for kombucha production. Kombuchas were produced from fusions of black tea and PPC at different ratios, and their chemical profiles and biological properties, including antioxidant and antimicrobial activities, were determined and compared with the control kombucha without PPC supplementation. The results showed that PPC contained high amounts of beneficial substances, including sugars, polyphenols, organic acids, vitamins, and minerals. An analysis of the microbial community in a kombucha SCOBY (Symbiotic Cultures of Bacteria and Yeasts) using next-generation sequencing revealed that Acetobacter and Komagataeibacter were the most predominant acetic acid bacteria. Furthermore, Dekkera and Bacillus were also the prominent yeast and bacteria in the kombucha SCOBY. A comparative analysis was performed for kombucha products fermented using black tea and a fusion of black tea and PPC, and the results revealed that the kombucha made from the black tea and PPC infusion exhibited a higher total phenolic content and antioxidant activity than the control kombucha. The antimicrobial properties of the kombucha products made from black tea and the PPC infusion were also greater than those of the control. Several volatile compounds that contributed to the flavor, aroma, and beneficial health properties, such as esters, carboxylic acids, phenols, alcohols, aldehydes, and ketones, were detected in kombucha products made from a fusion of black tea and PPC. This study shows that PPC exhibits high potential as a supplement to the raw material infusion used with black tea for functional kombucha production.


Subject(s)
Acetobacteraceae , Ananas , Anti-Infective Agents , Camellia sinensis , Tea/chemistry , Beverages/analysis , Yeasts , Antioxidants/analysis , Phenols/analysis , Anti-Infective Agents/analysis , Fermentation
4.
Sci Rep ; 12(1): 22062, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543886

ABSTRACT

Ethanol production at high temperatures using lignocellulosic biomass as feedstock requires a highly efficient thermo and lignocellulosic inhibitor-tolerant ethanologenic yeast. In this study, sixty-three yeast isolates were obtained from tropical acidic fruits using a selective acidified medium containing 80 mM glacial acetic acid. Twenty-nine of the yeast isolates exhibited significant thermo and acetic acid-tolerant fermentative abilities. All these isolates were classified into three major yeast species, namely Saccharomycodes ludwigii, Pichia kudriavzevii, and P. manshurica, based on molecular identification. Saccharomycodes ludwigii APRE2 displayed an ability to grow at high temperatures of up to 43 °C and exhibited significant multistress tolerance toward acetic acid, furfural, 5-hydroxymethyl furfural (5-HMF), and ethanol among the isolated yeast species. It can produce a maximum ethanol concentration of 63.07 g/L and productivity of 1.31 g/L.h in yeast extract malt extract (YM) medium containing 160 g/L glucose and supplemented with 80 mM acetic acid and 15 mM furfural as a cocktail inhibitor. When an acid-pretreated pineapple waste hydrolysate (PWH) containing approximately 106 g/L total sugars, 131 mM acetic acid, and 3.95 mM furfural was used as a feedstock, 38.02 g/L and 1.58 g/L.h of ethanol concentration and productivity, respectively, were achieved. Based on the results of the current study, the new thermo and acetic acid-tolerant yeast S. ludwigii APRE2 exhibited excellent potential for second-generation bioethanol production at high temperatures.


Subject(s)
Furaldehyde , Saccharomycetales , Furaldehyde/pharmacology , Yeasts , Fermentation , Acetic Acid , Ethanol
5.
Sci Rep ; 12(1): 13965, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978081

ABSTRACT

High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a newly isolated thermotolerant yeast, Saccharomyces cerevisiae HG1.1, and the expression of genes during ethanol fermentation at 40 °C were carried out. Three independent variables, including cell concentration, pH, and yeast extract, positively affected ethanol production from PWH at 40 °C. The optimum levels of these significant factors evaluated using response surface methodology (RSM) based on central composite design (CCD) were a cell concentration of 8.0 × 107 cells/mL, a pH of 5.5, and a yeast extract concentration of 4.95 g/L, yielding a maximum ethanol concentration of 36.85 g/L and productivity of 3.07 g/L. Gene expression analysis during high-temperature ethanol fermentation using RT-qPCR revealed that the acquisition of thermotolerance ability and ethanol fermentation efficiency of S. cerevisiae HG1.1 are associated with genes responsible for growth and ethanol stress, oxidative stress, acetic acid stress, DNA repair, the pyruvate-to-tricarboxylic acid (TCA) pathway, and the pyruvate-to-ethanol pathway.


Subject(s)
Ananas , Thermotolerance , Ananas/genetics , Ananas/metabolism , Ethanol/metabolism , Fermentation , Gene Expression , Pyruvates/metabolism , Saccharomyces cerevisiae/metabolism , Temperature , Thermotolerance/genetics
6.
Braz. j. microbiol ; Braz. j. microbiol;49(3): 647-655, July-Sept. 2018. graf
Article in English | LILACS | ID: biblio-951810

ABSTRACT

Abstract An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19 kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60 °C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60 °C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Subject(s)
Aspergillus fumigatus/enzymology , Fungal Proteins/genetics , Fungal Proteins/chemistry , Gene Expression , Cellulase/genetics , Cellulase/chemistry , Cloning, Molecular , Aspergillus fumigatus/genetics , Substrate Specificity , Enzyme Stability , Kluyveromyces/genetics , Kluyveromyces/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Fungal Proteins/metabolism , Cellulase/metabolism , Hot Temperature , Hydrogen-Ion Concentration
7.
Braz. j. microbiol ; Braz. j. microbiol;49(2): 378-391, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889229

ABSTRACT

Abstract High potential, thermotolerant, ethanol-producing yeasts were successfully isolated in this study. Based on molecular identification and phylogenetic analysis, the isolated thermotolerant yeasts were clustered in the genera of Pichia kudriavzevii, Candida tropicalis, Candida orthopsilosis, Candida glabrata and Kodamea ohmeri. A comparative study of ethanol production using 160 g/L glucose as a substrate revealed several yeast strains that could produce high ethanol concentrations at high temperatures. When sugarcane bagasse (SCB) hydrolysate containing 85 g/L glucose was used as a substrate, the yeast strain designated P. kudriavzevii RZ8-1 exhibited the highest ethanol concentrations of 35.51 g/L and 33.84 g/L at 37 °C and 40 °C, respectively. It also exhibited multi-stress tolerance, such as heat, ethanol and acetic acid tolerance. During ethanol fermentation at high temperature (42 °C), genes encoding heat shock proteins (ssq1 and hsp90), alcohol dehydrogenases (adh1, adh2, adh3 and adh4) and glyceraldehyde-3-phosphate dehydrogenase (tdh2) were up-regulated, suggesting that these genes might play a crucial role in the thermotolerance ability of P. kudriavzevii RZ8-1 under heat stress. These findings suggest that the growth and ethanol fermentation activities of this organism under heat stress were restricted to the expression of genes involved not only in heat shock response but also in the ethanol production pathway.


Subject(s)
Ethanol/metabolism , Hot Temperature , Pichia/metabolism , Biotransformation , Candida/classification , Candida/isolation & purification , Candida/metabolism , Pichia/classification , Pichia/isolation & purification , Plant Extracts/metabolism , Saccharum/metabolism , Stress, Physiological
8.
Braz J Microbiol ; 49 Suppl 1: 140-150, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29588196

ABSTRACT

Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20×20×5mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54g/L and 1.36g/Lh, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.


Subject(s)
Ethanol/metabolism , Industrial Microbiology/methods , Saccharomyces cerevisiae/metabolism , Sorghum/microbiology , Alginates/chemistry , Cells, Immobilized/chemistry , Cells, Immobilized/metabolism , Ethanol/analysis , Fermentation , Saccharomyces cerevisiae/chemistry , Sorghum/chemistry , Sorghum/metabolism
9.
Braz J Microbiol ; 49(3): 647-655, 2018.
Article in English | MEDLINE | ID: mdl-29449177

ABSTRACT

An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60°C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60°C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Subject(s)
Aspergillus fumigatus/enzymology , Cellulase/chemistry , Cellulase/genetics , Cloning, Molecular , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression , Aspergillus fumigatus/genetics , Cellulase/metabolism , Enzyme Stability , Fungal Proteins/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Kluyveromyces/genetics , Kluyveromyces/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
10.
3 Biotech ; 8(2): 126, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29450116

ABSTRACT

In this work, the newly isolated thermotolerant Kluyveromyces marxianus DBKKUY-103 exhibited a high ethanol fermentation efficiency at high temperatures using sweet sorghum juice (SSJ). The highest ethanol concentrations and productivities achieved under the optimum conditions using thermotolerant K. marxianus DBKKUY-103 were 85.16 g/l and 1.42 g/l.h at 37 °C and 83.46 g/l and 1.39 g/l.h at 40 °C, respectively. The expression levels of genes during ethanol fermentation at 40 °C were evaluated and the results found that the transcriptional levels of the RAD10, RAD14, RAD33, RAD50, ATPH, ATP4, ATP16, and ATP20 genes were up-regulated compared with those at 30 °C, suggesting that the high growth and high ethanol production efficiencies of K. marxianus DBKKUY-103 during high-temperature ethanol production associated with the genes involved in DNA repair and ATP production.

11.
Braz J Microbiol ; 49(2): 378-391, 2018.
Article in English | MEDLINE | ID: mdl-29154013

ABSTRACT

High potential, thermotolerant, ethanol-producing yeasts were successfully isolated in this study. Based on molecular identification and phylogenetic analysis, the isolated thermotolerant yeasts were clustered in the genera of Pichia kudriavzevii, Candida tropicalis, Candida orthopsilosis, Candida glabrata and Kodamea ohmeri. A comparative study of ethanol production using 160g/L glucose as a substrate revealed several yeast strains that could produce high ethanol concentrations at high temperatures. When sugarcane bagasse (SCB) hydrolysate containing 85g/L glucose was used as a substrate, the yeast strain designated P. kudriavzevii RZ8-1 exhibited the highest ethanol concentrations of 35.51g/L and 33.84g/L at 37°C and 40°C, respectively. It also exhibited multi-stress tolerance, such as heat, ethanol and acetic acid tolerance. During ethanol fermentation at high temperature (42°C), genes encoding heat shock proteins (ssq1 and hsp90), alcohol dehydrogenases (adh1, adh2, adh3 and adh4) and glyceraldehyde-3-phosphate dehydrogenase (tdh2) were up-regulated, suggesting that these genes might play a crucial role in the thermotolerance ability of P. kudriavzevii RZ8-1 under heat stress. These findings suggest that the growth and ethanol fermentation activities of this organism under heat stress were restricted to the expression of genes involved not only in heat shock response but also in the ethanol production pathway.


Subject(s)
Ethanol/metabolism , Hot Temperature , Pichia/metabolism , Biotransformation , Candida/classification , Candida/isolation & purification , Candida/metabolism , Pichia/classification , Pichia/isolation & purification , Plant Extracts/metabolism , Saccharum/metabolism , Stress, Physiological
12.
Braz. j. microbiol ; Braz. j. microbiol;492018.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469652

ABSTRACT

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.

13.
Braz. j. microbiol ; Braz. j. microbiol;49(supl.1): 140-150, 2018. tab, graf
Article in English | LILACS | ID: biblio-974343

ABSTRACT

Abstract Ethanol production from sweet sorghum juice (SSJ) using the thermotolerant Saccharomyces cerevisiae strain DBKKUY-53 immobilized in an alginate-loofah matrix (ALM) was successfully developed. As found in this study, an ALM with dimensions of 20 × 20 × 5 mm3 is effective for cell immobilization due to its compact structure and long-term stability. The ALM-immobilized cell system exhibited greater ethanol production efficiency than the freely suspended cell system. By using a central composite design (CCD), the optimum conditions for ethanol production from SSJ by ALM-immobilized cells were determined. The maximum ethanol concentration and volumetric ethanol productivity obtained using ALM-immobilized cells under the optimal conditions were 97.54 g/L and 1.36 g/L h, respectively. The use of the ALM-immobilized cells was successful for at least six consecutive batches (360 h) without any loss of ethanol production efficiency, suggesting their potential application in industrial ethanol production.


Subject(s)
Saccharomyces cerevisiae/metabolism , Industrial Microbiology/methods , Sorghum/microbiology , Ethanol/metabolism , Saccharomyces cerevisiae/chemistry , Cells, Immobilized/metabolism , Cells, Immobilized/chemistry , Sorghum/metabolism , Sorghum/chemistry , Ethanol/analysis , Alginates/chemistry , Fermentation
14.
J Genet ; 96(2): 377-382, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28674239

ABSTRACT

The blue-crested lizard, Calotes mystaceus Duméril & Bibron, 1837, is listed as a protected wild animal in Thailand. Its population is likely to be dramatically reduced due to massive hunting in several areas in this country. Basic information on its population genetics is therefore needed to facilitate its conservation. Thus, in this study we investigated the mitochondrial cytochrome c oxidase subunit 1 (CO1) sequence variation of 238 individualC.mystaceus from 42 different geographical localities of the north, west, central, east and northeast regions of Thailand. High genetic diversity and genetic differentiation at the intrapopulation and interpopulation levels was observed.We detected 63 unique haplotypes and 12 common/shared haplotypes. The phylogenetic analysis reveals two major lineages, I and II. These two lineages are separated by mountain ranges, which play an important role as natural barriers blocking gene flow. Our finding reveal at least two cryptic lineages represented in C. mystaceus populations in Thailand. However, a comprehensive investigation of the morphology, biology, ecology and genetic diversity of C. mystaceus in other regions within its area of distribution is needed.


Subject(s)
Electron Transport Complex IV/genetics , Genetic Variation , Genetics, Population , Lizards/genetics , Phylogeny , Animals , DNA, Mitochondrial/genetics , Gene Flow , Haplotypes , Thailand
15.
Antonie Van Leeuwenhoek ; 108(1): 173-90, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25980834

ABSTRACT

Thermotolerant inulin-utilizing yeast strains were successfully isolated in this study. Among the isolated strains, Kluyveromyces marxianus DBKKU Y-102 was found to be the most effective strain for direct ethanol fermentation at high temperature from fresh Jerusalem artichoke (JA) tubers without inulin hydrolysis under consolidated bioprocessing (CBP). The maximum ethanol concentrations produced by this strain under the optimum culture conditions were 104.83 and 97.46 g L(-1) at 37 and 40 °C, respectively. Data from this study clearly demonstrated that the use of thermotolerant inulin-utilizing yeast K. marxianus for ethanol production from fresh JA tubers in the CBP process not only provided high levels of ethanol, but also could eliminate the addition of external enzyme for inulin hydrolysis, which might lead to the reduction of operating costs. The expression of genes involved in carbohydrate metabolism in K. marxianus DBKKU Y-102 during ethanol fermentation was investigated by real-time RT-PCR, and the results revealed that expression levels were distinctive depending on the growth phase and growth conditions. However, among the genes tested, adh4 and tdh2 were highly expressed under high temperature conditions in both exponential- and stationary-growth phases, suggesting that these genes might play a crucial role in acquiring thermotolerance ability in this organism under stress conditions.


Subject(s)
Ethanol/metabolism , Helianthus/metabolism , Helianthus/microbiology , Inulin/metabolism , Kluyveromyces/growth & development , Kluyveromyces/metabolism , Gene Expression Profiling , Kluyveromyces/genetics , Metabolic Networks and Pathways/genetics , Plant Tubers/metabolism , Plant Tubers/microbiology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Temperature
16.
Biotechnol Biofuels ; 6(1): 180, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24308448

ABSTRACT

BACKGROUND: During ethanol fermentation, the ethanologenic bacterium, Zymomonas mobilis may encounter several environmental stresses such as heat, ethanol and osmotic stresses due to high sugar concentration. Although supplementation of the compatible solute sorbitol into culture medium enhances cell growth of Z. mobilis under osmotic stress, the protective function of this compound on cell growth and ethanol production by this organism under other stresses such as heat and ethanol has not been described yet. The formation of sorbitol in Z. mobilis was carried out by the action of the glucose-fructose oxidoreductase (GFOR) enzyme which is regulated by the gfo gene. Therefore, the gfo gene in Z. mobilis was disrupted by the fusion-PCR-based construction technique in the present study, and the protective function of sorbitol on cell growth, protein synthesis and ethanol production by Z. mobilis under heat, ethanol, and osmotic stresses was investigated. RESULTS: Based on the fusion-PCR-based construction technique, the gfo gene in Z. mobilis was disrupted. Disruption of the Z. mobilis gfo gene resulted in the reduction of cell growth and ethanol production not only under osmotic stress but also under heat and ethanol stresses. Under these stress conditions, the transcription level of pdc, adhA, and adhB genes involved in the pyruvate-to-ethanol (PE) pathway as well as the synthesis of proteins particularly in Z. mobilis disruptant strain were decreased compared to those of the parent. These findings suggest that sorbitol plays a crucial role not only on cell growth and ethanol production but also on the protection of cellular proteins from stress responses. CONCLUSION: We showed for the first time that supplementation of the compatible solute sorbitol not only promoted cell growth but also increased the ethanol fermentation capability of Z. mobilis under heat, ethanol, and osmotic stresses. Although the molecular mechanism involved in tolerance to stress conditions after sorbitol supplementation is still unclear, this research has provided useful information for the development of the effective ethanol fermentation process particularly under environmental conditions with high temperature or high ethanol and sugar concentration conditions.

SELECTION OF CITATIONS
SEARCH DETAIL