Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Clin Nutr ; 43(7): 1800-1808, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861892

ABSTRACT

BACKGROUND & AIMS: Our study aims to determine whether myostatin (MSTN) is associated with muscle mass and strength in individuals with cancer or obesity, as well as with cancer cachexia (CC) or sarcopenic obesity (SO). METHODS: The ACTICA study included individuals with CC (n = 70) or without CC (NC, n = 73). The MYDIASECRET study included individuals with obesity evaluated before (T0) and 3 months (T3) after bariatric surgery (n = 62). Body composition was assessed using bioelectrical impedance analysis (BIA). Skeletal muscle mass (SMM) and appendicular SMM (ASMM) were calculated from Janssen's and Sergi's equations, respectively, and expressed as indexes (SMMI and ASMMI). Handgrip strength (HGS) was assessed using a Jamar hand-held dynamometer. MSTN plasma levels were measured using ELISA. Spearman's coefficient was used to correlate MSTN with muscle mass and strength. Receiver operating characteristic (ROC) curve analysis was performed to identify an optimal MSTN cutoff level for the prediction of CC or SO. RESULTS: In the ACTICA study, muscle mass and strength were lower in CC individuals than in NC individuals (SMMI: 8.0 kg/m2vs 9.0 kg/m2, p = 0.004; ASMMI: 6.2 kg/m2vs 7.2 kg/m2, p < 0.001; HGS: 28 kg vs 38 kg, p < 0.001). MSTN was also lower in CC individuals than in NC individuals (1434 pg/mL vs 2149 pg/mL, p < 0.001). Muscle mass and strength were positively correlated with MSTN (SMMI: R = 0.500, p < 0.001; ASMMI: R = 0.479, p < 0.001; HGS: R = 0.495, p < 0.001). ROC curve analysis showed a MSTN cutoff level of 1548 pg/mL (AUC 0.684, sensitivity 57%, specificity 75%, p < 0.001) for the prediction of CC. In the MYDIASECRET study, muscle mass and strength were reduced at T3 (SMMI: -8%, p < 0.001; ASMMI: -12%, p < 0.001; HGS: -6%, p = 0.005). MSTN was also reduced at T3 (1773 pg/mL vs 2582 pg/mL, p < 0.001). Muscle mass and strength were positively correlated with MSTN at T0 and T3 (SMMI-T0: R = 0.388, p = 0.002; SMMI-T3: R = 0.435, p < 0.001; HGS-T0: R = 0.337, p = 0.007; HGS-T3: R = 0.313, p = 0.013). ROC curve analysis showed a MSTN cutoff level of 4225 pg/mL (AUC 0.835, sensitivity 98%, specificity 100%, p = 0.014) for the prediction of SO at T3. CONCLUSIONS: MSTN is positively correlated with muscle mass and strength in individuals with cancer or obesity, suggesting its potential use as a biomarker of muscle mass and strength. The ROC curve analysis suggests the potential use of MSTN as a screening tool for CC and SO.


Subject(s)
Biomarkers , Cachexia , Hand Strength , Muscle, Skeletal , Myostatin , Neoplasms , Obesity , Sarcopenia , Humans , Myostatin/blood , Male , Female , Neoplasms/blood , Neoplasms/complications , Neoplasms/physiopathology , Muscle, Skeletal/physiopathology , Middle Aged , Obesity/blood , Obesity/physiopathology , Obesity/complications , Cachexia/blood , Cachexia/etiology , Cachexia/physiopathology , Biomarkers/blood , Sarcopenia/blood , Sarcopenia/etiology , Sarcopenia/physiopathology , Hand Strength/physiology , Body Composition , Aged , Muscle Strength/physiology , Adult , Electric Impedance
2.
J Cachexia Sarcopenia Muscle ; 15(3): 919-933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572511

ABSTRACT

BACKGROUND: Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy. METHODS: The effect of AR on cancer cachexia was investigated in two distinct murine models of colorectal cancer. First, 7-week-old CD2F1 male mice were subcutaneously injected with colon-26 carcinoma cells (C26) or vehicle (CT). Six days after injection, mice were treated for 5 days with AdipoRon (50 mg/kg/day; C26 + AR) or the corresponding vehicle (CT and C26). Additionally, a genetic model, the ApcMin/+ mouse, that develops spontaneously numerous intestinal polyps, was used. Eight-week-old male ApcMin/+ mice were treated with AdipoRon (50 mg/kg/day; Apc + AR) or the corresponding vehicle (Apc) over a period of 12 weeks, with C57BL/6J wild-type mice used as controls. In both models, several parameters were assessed in vivo: body weight, grip strength and serum parameters, as well as ex vivo: molecular changes in muscle, fat and liver. RESULTS: The protective effect of AR on cachexia development was observed in both cachectic C26 and ApcMin/+ mice. In these mice, AR administration led to a significant alleviation of body weight loss and muscle wasting, together with rescued muscle strength (P < 0.05 for all). In both models, AR had a strong anti-inflammatory effect, reflected by lower systemic interleukin-6 levels (-55% vs. C26, P < 0.001 and -80% vs. Apc mice, P < 0.05), reduced muscular inflammation as indicated by lower levels of Socs3, phospho-STAT3 and Serpina3n, an acute phase reactant (P < 0.05 for all). In addition, AR blunted circulating levels of corticosterone (-46% vs. C26 mice, P < 0.001 and -60% vs. Apc mice, P < 0.05), the predominant murine glucocorticoid known to induce muscle atrophy. Accordingly, key glucocorticoid-responsive factors implicated in atrophy programmes were-or tended to be-significantly blunted in skeletal muscle by AR. Finally, AR protected against lipid metabolism alterations observed in ApcMin/+ mice, as it mitigated the increase in circulating triglyceride levels (-38%, P < 0.05) by attenuating hepatic triglyceride synthesis and fatty acid uptake by the liver. CONCLUSIONS: Altogether, these results show that AdipoRon rescued the cachectic phenotype by alleviating body weight loss and muscle atrophy, along with restraining inflammation and hypercorticism in preclinical murine models. Therefore, AdipoRon could represent an innovative therapeutic strategy to counteract cancer cachexia.


Subject(s)
Cachexia , Inflammation , Receptors, Adiponectin , Animals , Cachexia/etiology , Cachexia/drug therapy , Cachexia/metabolism , Mice , Receptors, Adiponectin/agonists , Receptors, Adiponectin/metabolism , Male , Inflammation/drug therapy , Disease Models, Animal , Cell Line, Tumor , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neoplasms/complications , Neoplasms/drug therapy , Piperidines
3.
Mol Metab ; 83: 101930, 2024 May.
Article in English | MEDLINE | ID: mdl-38570069

ABSTRACT

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.


Subject(s)
Acidosis , Adipocytes , Adipose Tissue , Cachexia , Lipolysis , Animals , Mice , Acidosis/metabolism , Adipocytes/metabolism , Humans , Adipose Tissue/metabolism , Cachexia/metabolism , Male , Tumor Microenvironment , Cell Line, Tumor , Mice, Inbred C57BL , Fatty Acids/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Female , Glucuronidase/metabolism , Hydrogen-Ion Concentration
4.
Diabetologia ; 67(2): 333-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897566

ABSTRACT

AIMS/HYPOTHESIS: We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS: Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS: D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION: D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL: NCT03852069.


Subject(s)
Clostridiales , Diabetes Mellitus, Type 2 , Metformin , Humans , Animals , Mice , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Diet, High-Fat
5.
Eur J Endocrinol ; 189(3): 409-421, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37638789

ABSTRACT

IMPORTANCE AND OBJECTIVE: The identification of myokines susceptible to improve glucose homeostasis following bariatric surgery could lead to new therapeutic approaches for type 2 diabetes. METHODS: Changes in the homeostasis model assessment (HOMA) test were assessed in patients before and 3 months after bariatric surgery. Changes in myokines expression and circulating levels were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Myokines known to regulate glucose homeostasis were identified using literature (targeted study) and putative myokines using RNA-sequencing (untargeted study). A linear regression analysis adjusted for age and sex was used to search for associations between changes in the HOMA test and changes in myokines. RESULTS: In the targeted study, brain-derived neurotrophic factor (BDNF) expression was upregulated (+30%, P = .006) while BDNF circulating levels were decreased (-12%, P = .001). Upregulated BDNF expression was associated with decreased HOMA of insulin resistance (HOMA-IR) (adjusted estimate [95% confidence interval {CI}]: -0.51 [-0.88 to -0.13], P = .010). Decreased BDNF serum levels were associated with decreased HOMA of beta-cell function (HOMA-B) (adjusted estimate [95% CI] = 0.002 [0.00002-0.0031], P = .046). In the untargeted study, upregulated putative myokines included XYLT1 (+64%, P < .001), LGR5 (+57, P< .001), and SPINK5 (+46%, P < .001). Upregulated LGR5 was associated with decreased HOMA-IR (adjusted estimate [95% CI] = -0.50 [-0.86 to -0.13], P = .009). Upregulated XYLT1 and SPINK5 were associated with increased HOMA of insulin sensitivity (HOMA-S) (respectively, adjusted estimate [95% CI] = 109.1 [28.5-189.8], P = .009 and 16.5 [0.87-32.19], P = .039). CONCLUSIONS: Improved glucose homeostasis following bariatric surgery is associated with changes in myokines expression and circulating levels. In particular, upregulation of BDNF, XYLT1, SPINK5, and LGR5 is associated with improved insulin sensitivity. These results suggest that these myokines could contribute to improved glucose homeostasis following bariatric surgery. STUDY REGISTRATION: NCT03341793 on ClinicalTrials.gov (https://clinicaltrials.gov/).


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Brain-Derived Neurotrophic Factor , Diabetes Mellitus, Type 2/surgery , Glucose
6.
Nature ; 617(7962): 827-834, 2023 May.
Article in English | MEDLINE | ID: mdl-37165186

ABSTRACT

Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.


Subject(s)
Cachexia , Muscular Atrophy , Neoplasms , Signal Transduction , Xedar Receptor , Animals , Mice , Cachexia/complications , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/prevention & control , Neoplasms/complications , Neoplasms/metabolism , Neoplasms/pathology , Xedar Receptor/metabolism , Humans , Ligands , Receptors, Oncostatin M/metabolism , Oncostatin M/metabolism , NF-kappaB-Inducing Kinase
7.
Obes Surg ; 33(5): 1373-1381, 2023 05.
Article in English | MEDLINE | ID: mdl-36892751

ABSTRACT

INTRODUCTION: Weight loss failure or weight regain after primary Roux-en-Y gastric bypass (RYGB) is a challenge for bariatric surgeons. Failure to achieve a body mass index (BMI) <35 kg/m2 after RYGB occurs in up to 40.0%. The aim of this study was to evaluate long-term results of a novel technique for distalization of Roux-en-Y gastric bypass (DRYGB) as a revisional procedure. METHODS: Retrospective data were reviewed for 22 patients who had undergone RYGB and failed to achieve an excess weight loss (EWL) >50% or BMI <35 kg/m2 and underwent limb distalization between 2013 and 2022. For this DRYGB procedure, the length of the common channel was 100 cm, and the lengths of the biliopancreatic limb and the alimentary limb were 1/3 and 2/3 of the remaining bowel, respectively. RESULTS: The mean BMI values before and after DRYGB were 43.7 kg/m2 and 33.5 kg/m2, respectively. Five years after DRYGB, mean % EWL was 74.3% and mean % total weight loss (TWL) was 28.8%. Mean % EWL and mean % TWL of the two procedures (RYGB and DRYGB) after 5 years were 80.9% and 44.7%, respectively. Three patients experienced protein calorie malnutrition. One was reproximalized and the others were treated with parenteral nutrition with no recurrence. There was a significant decrease in the incidence of diabetes type 2 and dyslipidemia after DRYGB. CONCLUSION: The DRYGB procedure results in substantial and sustained long-term weight loss. Due to the risk of malnutrition, patients must be strictly followed for life after the procedure.


Subject(s)
Gastric Bypass , Laparoscopy , Obesity, Morbid , Humans , Gastric Bypass/methods , Obesity, Morbid/surgery , Retrospective Studies , Reoperation/methods , Weight Loss , Body Mass Index , Laparoscopy/methods
8.
Eur J Endocrinol ; 188(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36806620

ABSTRACT

OBJECTIVE: The adipogenic PPARG-encoded PPARγ nuclear receptor also displays essential placental functions. We evaluated the metabolic, reproductive, and perinatal features of patients with PPARG-related lipodystrophy. METHODS: Current and retrospective data were collected in patients referred to a National Rare Diseases Reference Centre. RESULTS: 26 patients from 15 unrelated families were studied (18 women, median age 43 years). They carried monoallelic PPARG variants except a homozygous patient with congenital generalized lipodystrophy. Among heterozygous patients aged 16 or more (n = 24), 92% had diabetes, 96% partial lipodystrophy (median age at diagnosis 24 and 37 years), 78% hypertriglyceridaemia, 71% liver steatosis, and 58% hypertension. The mean BMI was 26 ± 5.0 kg/m2. Women (n = 16) were frequently affected by acute pancreatitis (n = 6) and/or polycystic ovary syndrome (n = 12). Eleven women obtained one or several pregnancies, all complicated by diabetes (n = 8), hypertension (n = 4), and/or hypertriglyceridaemia (n = 10). We analysed perinatal data of patients according to the presence (n = 8) or absence (n = 9) of a maternal dysmetabolic environment. The median gestational age at birth was low in both groups (37 and 36 weeks of amenorrhea, respectively). As expected, the birth weight was higher in patients exposed to a foetal dysmetabolic environment of maternal origin. In contrast, 85.7% of non-exposed patients, in whom the variant is, or is very likely to be, paternally-inherited, were small for gestational age. CONCLUSIONS: Lipodystrophy-related PPARG variants induce early metabolic complications. Our results suggest that placental expression of PPARG pathogenic variants carried by affected foetuses could impair prenatal growth and parturition. This justifies careful pregnancy monitoring in affected families.


Subject(s)
Hypertension , Hypertriglyceridemia , Lipodystrophy , Pancreatitis , Infant, Newborn , Humans , Female , Pregnancy , Adult , PPAR gamma/genetics , Retrospective Studies , Acute Disease , Placenta , Parturition
9.
Metabolites ; 12(7)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35888749

ABSTRACT

Fetuin-A, a plasma multifunctional protein known to play a role in insulin resistance, is usually presented as a liver secreted protein. However, fetuin-A adipose tissue production has been also described. Here, we evaluated fetuin-A production by the liver and the adipose tissue during metabolic dysfunction-associated fatty liver disease (MAFLD)-non-alcoholic steatohepatitis (NASH) development. Fetuin-A was evaluated by enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), Western blot, and immunofluorescence in male foz-/- mice fed a normal diet (ND) or a high fat diet (HFD) at various timepoints and in MAFLD-NASH patients. Foz-/- mice fed a short-term HFD developed liver steatosis, insulin resistance, and increased circulating levels of fetuin-A compared to ND-fed mice. In mice and patients with NASH, fetuin-A was located not only in healthy or steatotic hepatocytes but also in some macrophages forming lipogranulomas. In both mice and humans, a significant amount of fetuin-A was present in the adipose tissue compared to the liver. However, messenger ribonucleic acid levels and cell culture experiments indicate that fetuin-A is produced by the liver but not by the adipose tissue. In conclusion, fetuin-A is produced by steatotic hepatocytes at early timepoints in MAFLD and correlates with insulin resistance both in mice and humans. In NASH, fetuin-A also co-localizes with activated liver macrophages and could be interpreted as a signal released by damaged hepatocytes.

10.
Cells ; 11(7)2022 03 25.
Article in English | MEDLINE | ID: mdl-35406681

ABSTRACT

Activin A (ActA) is considered to play a major role in cancer-induced cachexia (CC). Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However, the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM) atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube atrophy associated with the decline of MyHC-ß/slow, the main myosin isoform in human muscle cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor regulating MYH7, the gene which codes for MyHC-ß/slow. This decrease in MEF2C was involved in the decline of MyHC-ß/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease in MyHC-ß/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition, in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM mass by inhibiting MyHC-ß/slow synthesis through downregulation of MEF2C. This observation highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which contributes to SM atrophy in CC models.


Subject(s)
Activins , MEF2 Transcription Factors , Muscular Atrophy , Muscular Diseases , Animals , Cachexia/metabolism , Humans , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Muscle Development/genetics
11.
BMC Med ; 20(1): 110, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35351144

ABSTRACT

BACKGROUND: Dietary interventions targeting the gut microbiota have been proposed as innovative strategies to improve obesity-associated metabolic disorders. Increasing physical activity (PA) is considered as a key behavioral change for improving health. We have tested the hypothesis that changing the PA status during a nutritional intervention based on prebiotic supplementation can alter or even change the metabolic response to the prebiotic. We confirm in obese subjects and in high-fat diet fed mice that performing PA in parallel to a prebiotic supplementation is necessary to observe metabolic improvements upon inulin. METHODS: A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in obese participants who received 16 g/day native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Primary outcomes concern the changes on the gut microbiota composition, and secondary outcomes are related to the measures of anthropometric and metabolic parameters, as well as the evaluation of PA. Among the 106 patients who completed the study, 61 patients filled a questionnaire for PA before and after intervention (placebo: n = 31, prebiotic: n = 30). Except the dietitian (who provided dietary advices and recipes book), all participants and research staff were blinded to the treatments and no advices related to PA were given to participants in order to change their habits. In parallel, a preclinical study was designed combining both inulin supplementation and voluntary exercise in a model of diet-induced obesity in mice. RESULTS: Obese subjects who increased PA during a 3 months intervention with inulin-enriched diet exhibited several clinical improvements such as reduced BMI (- 1.6 kg/m2), decreased liver enzymes and plasma cholesterol, and improved glucose tolerance. Interestingly, the regulations of Bifidobacterium, Dialister, and Catenibacterium genera by inulin were only significant when participants exercised more. In obese mice, we highlighted a greater gut fermentation of inulin and improved glucose homeostasis when PA is combined with prebiotics. CONCLUSION: We conclude that PA level is an important determinant of the success of a dietary intervention targeting the gut microbiota. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03852069 (February 22, 2019 retrospectively registered).


Subject(s)
Inulin , Obesity , Animals , Body Mass Index , Diet, High-Fat , Exercise , Humans , Inulin/pharmacology , Mice , Obesity/drug therapy , Obesity/metabolism
12.
Obes Surg ; 32(4): 1227-1235, 2022 04.
Article in English | MEDLINE | ID: mdl-35138516

ABSTRACT

PURPOSE: Metabolic dysfunction-associated fatty liver disease-related cirrhosis is possible at the time of bariatric surgery, complicated by further liver decompensation. Hepatic decompensation can also occur in the absence of cirrhosis but the presentation is less clear. METHODS: We analyze the clinical characteristics, histological findings, and management of patients without cirrhosis who developed hepatic decompensation after bariatric surgery in our single tertiary-care hospital. RESULTS: From 2014 to 2019, 6 patients underwent a transvenous liver biopsy for liver decompensation after bariatric surgery. Mean age at diagnosis was 44 years. The time between bariatric surgery and the onset of symptoms varied widely (min. 8 months, max. 17 years). Mean % of weight loss was high at 43%. The clinical presentation was as follows: fatigue and jaundice (5/6), leg edema (3/6), and ascites (1/6). Blood test showed increased transaminases (mean ALT 53 UI/L, mean AST 130 UI/L), bilirubin (mean 6 mg/dL), and INR (mean 1.5) with a low albumin level (mean 27 mg/dL). The hepatic venous pressure gradient was high (mean 10 mmHg). Histology revealed steatosis, hepatocyte ballooning but also portal inflammation with polymorphonuclear cells, and bile duct alterations. Mean fibrosis score was 2. The clinical course was favorable with nutritional support with a mean follow-up of 36 months. CONCLUSION: Liver decompensation in the absence of cirrhosis can occur after bariatric surgery with a highly variable delay. A special histological signature is present with the coexistence of steatosis, bile duct alterations, and portal inflammation. Substantial clinical improvement with appropriate nutritional support seems to be effective.


Subject(s)
Bariatric Surgery , Fatty Liver , Liver Failure , Obesity, Morbid , Bariatric Surgery/adverse effects , Fatty Liver/complications , Humans , Inflammation/complications , Liver/pathology , Liver Cirrhosis/complications , Liver Cirrhosis/surgery , Obesity, Morbid/surgery
13.
Gut ; 71(3): 534-543, 2022 03.
Article in English | MEDLINE | ID: mdl-34108237

ABSTRACT

OBJECTIVE: To investigate the abundance and the prevalence of Dysosmobacter welbionis J115T, a novel butyrate-producing bacterium isolated from the human gut both in the general population and in subjects with metabolic syndrome. To study the impact of this bacterium on host metabolism using diet-induced obese and diabetic mice. DESIGN: We analysed the presence and abundance of the bacterium in 11 984 subjects using four human cohorts (ie, Human Microbiome Project, American Gut Project, Flemish Gut Flora Project and Microbes4U). Then, we tested the effects of daily oral gavages with live D. welbionis J115T on metabolism and several hallmarks of obesity, diabetes, inflammation and lipid metabolism in obese/diabetic mice. RESULTS: This newly identified bacterium was detected in 62.7%-69.8% of the healthy population. Strikingly, in obese humans with a metabolic syndrome, the abundance of Dysosmobacter genus correlates negatively with body mass index, fasting glucose and glycated haemoglobin. In mice, supplementation with live D. welbionis J115T, but not with the pasteurised bacteria, partially counteracted diet-induced obesity development, fat mass gain, insulin resistance and white adipose tissue hypertrophy and inflammation. In addition, live D. welbionis J115T administration protected the mice from brown adipose tissue inflammation in association with increased mitochondria number and non-shivering thermogenesis. These effects occurred with minor impact on the mouse intestinal microbiota composition. CONCLUSIONS: These results suggest that D. welbionis J115T directly and beneficially influences host metabolism and is a strong candidate for the development of next-generation beneficial bacteria targeting obesity and associated metabolic diseases.


Subject(s)
Clostridiales/isolation & purification , Metabolic Diseases/microbiology , Metabolic Diseases/prevention & control , Obesity/microbiology , Obesity/prevention & control , Animals , Case-Control Studies , Cohort Studies , Humans , Insulin Resistance , Mice , Mice, Obese
14.
Acta Clin Belg ; 77(4): 805-814, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34404335

ABSTRACT

Chronic kidney disease (CKD) is a major public health problem, increasing the risk of cardiovascular events and death and potentially leading to kidney failure. Novel drugs that slow the progression of this non-communicable disease are therefore urgently needed. Initially developed as glucose-lowering drugs, inhibitors of the sodium-glucose cotransporter 2 (SGLT2) drastically reduce the overall mortality and cardiovascular events and slow the progression of CKD. Kidney protection conferred by SGLT2 inhibitors is independent from the presence of diabetes, observed on top of renin-angiotensin system inhibition and consistent across a wide range of categories of glomerular filtration rate and albuminuria. The mechanisms through which SGLT2 inhibitors improve kidney outcomes are likely multifactorial. Inhibition of SGLT2 in the kidney proximal tubule results in natriuresis and glucosuria, with beneficial effects on metabolic control, blood pressure and body weight. In addition, SGLT2 inhibitors also improve intraglomerular hemodynamics, podocyte integrity, cell metabolism, and erythropoiesis and reduce hypoxia, oxidative stress, sympathetic nervous activity, inflammation and fibrosis. The major impact of SGLT2 inhibitors on kidney outcomes, along with the excellent safety profile of this new class of drugs, open novel avenues for the treatment of CKD in patients with and without diabetes.


Subject(s)
Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Cardiovascular Diseases , Diabetes Mellitus , Glucose/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Kidney , Renal Insufficiency, Chronic/drug therapy , Sodium , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
16.
Gut Microbes ; 13(1): 1994270, 2021.
Article in English | MEDLINE | ID: mdl-34812127

ABSTRACT

Reduction of A. muciniphila relative abundance in the gut microbiota is a widely accepted signature associated with obesity-related metabolic disorders. Using untargeted metabolomics profiling of fasting plasma, our study aimed at identifying metabolic signatures associated with beneficial properties of alive and pasteurized A. muciniphila when administrated to a cohort of insulin-resistant individuals with metabolic syndrome. Our data highlighted either shared or specific alterations in the metabolome according to the form of A. muciniphila administered with respect to a control group. Common responses encompassed modulation of amino acid metabolism, characterized by reduced levels of arginine and alanine, alongside several intermediates of tyrosine, phenylalanine, tryptophan, and glutathione metabolism. The global increase in levels of acylcarnitines together with specific modulation of acetoacetate also suggested induction of ketogenesis through enhanced ß-oxidation. Moreover, our data pinpointed some metabolites of interest considering their emergence as substantial compounds pertaining to health and diseases in the more recent literature.


Subject(s)
Metabolic Syndrome/diet therapy , Metabolome/drug effects , Probiotics/pharmacology , Adolescent , Adult , Aged , Akkermansia/physiology , Amino Acids/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Glycolysis/drug effects , Humans , Insulin Resistance , Ketone Bodies/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Metabolic Syndrome/blood , Middle Aged , Probiotics/administration & dosage , Young Adult
17.
JHEP Rep ; 3(4): 100323, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34355155

ABSTRACT

BACKGROUND & AIMS: Retrospective cross-sectional studies linked sarcopenia and myosteatosis with metabolic dysfunction-associated fatty liver disease (MAFLD). Here, we wanted to clarify the dynamic relationship between sarcopenia, myosteatosis, and MAFLD. METHODS: A cohort of 48 obese patients was randomised for a dietary intervention consisting of 16 g/day of inulin (prebiotic) or maltodextrin (placebo) supplementation. Before and after the intervention, we evaluated liver steatosis and stiffness with transient elastography (TE); we assessed skeletal muscle index (SMI) and skeletal muscle fat index (SMFI) (a surrogate for absolute fat content in muscle) using computed tomography (CT) and bioelectrical impedance analysis (BIA). RESULTS: At baseline, sarcopenia was uncommon in patients with MAFLD (4/48, 8.3%). SMFI was higher in patients with high liver stiffness than in those with low liver stiffness (640.6 ± 114.3 cm2/ Hounsfield unit [HU] vs. 507.9 ± 103.0 cm2/HU, p = 0.001). In multivariate analysis, SMFI was robustly associated with liver stiffness even when adjusted for multiple confounders (binary logistic regression, p <0.05). After intervention, patients with inulin supplementation lost weight, but this was not associated with a decrease in liver stiffness. Remarkably, upon intervention (being inulin or maltodextrin), patients who lowered their SMFI, but not those who increased SMI, had a 12.7% decrease in liver stiffness (before = 6.36 ± 2.15 vs. after = 5.55 ± 1.97 kPa, p = 0.04). CONCLUSIONS: Myosteatosis, but not sarcopenia, is strongly and independently associated with liver stiffness in obese patients with MAFLD. After intervention, patients in which the degree of myosteatosis decreased reduced their liver stiffness, irrespective of body weight loss or prebiotic treatment. The potential contribution of myosteatosis to liver disease progression should be investigated. CLINICAL TRIALS REGISTRATION NUMBER: NCT03852069. LAY SUMMARY: The fat content in skeletal muscles (or myosteatosis) is strongly associated with liver stiffness in obese patients with MAFLD. After a dietary intervention, patients in which the degree of myosteatosis decreased also reduced their liver stiffness. The potential contribution of myosteatosis to liver disease progression should be investigated.

18.
Front Physiol ; 12: 677746, 2021.
Article in English | MEDLINE | ID: mdl-34220542

ABSTRACT

Skeletal muscle, the most abundant tissue in the body, plays vital roles in locomotion and metabolism. Understanding the cellular processes that govern regulation of muscle mass and function represents an essential step in the development of therapeutic strategies for muscular disorders. Myostatin, a member of the TGF-ß family, has been identified as a negative regulator of muscle development. Indeed, its inhibition induces an extensive skeletal muscle hypertrophy requiring the activation of Smad 1/5/8 and the Insulin/IGF-I signaling pathway, but whether other molecular mechanisms are involved in this process remains to be determined. Using transcriptomic data from various Myostatin inhibition models, we identified Pak1 as a potential mediator of Myostatin action on skeletal muscle mass. Our results show that muscle PAK1 levels are systematically increased in response to Myostatin inhibition, parallel to skeletal muscle mass, regardless of the Myostatin inhibition model. Using Pak1 knockout mice, we investigated the role of Pak1 in the skeletal muscle hypertrophy induced by different approaches of Myostatin inhibition. Our findings show that Pak1 deletion does not impede the skeletal muscle hypertrophy magnitude in response to Myostatin inhibition. Therefore, Pak1 is permissive for the skeletal muscle mass increase caused by Myostatin inhibition.

19.
J Hepatol ; 75(2): 292-301, 2021 08.
Article in English | MEDLINE | ID: mdl-33865909

ABSTRACT

BACKGROUND & AIMS: Studies exploring the relationship between muscle fat content and non-alcoholic fatty liver disease (NAFLD) are scarce. Herein, we aimed to evaluate the association of muscle mass and fatty infiltration with biopsy-assessed NAFLD in patients with obesity. METHODS: At inclusion (n = 184) and 12 months after a dietary intervention (n = 15) or bariatric surgery (n = 24), we evaluated NAFLD by liver biopsy, and skeletal muscle mass index (SMI) by CT (CT-SMI) or bioelectrical impedance analysis (BIA-SMI). We developed an index to evaluate absolute fat content in muscle (skeletal muscle fat index [SMFI]) from CT-based psoas muscle density (SMFIPsoas). RESULTS: Muscle mass was higher in patients with NAFLD than in those without (CT-SMI 56.8 ± 9.9 vs. 47.4 ± 6.5 cm2/m2, p <0.0001). There was no association between sarcopenia and non-alcoholic steatohepatitis (NASH). SMFIPsoas was higher in NASH ≥F2 and early NASH F0-1 than in NAFL (78.5 ± 23.6 and 73.1 ± 15.6 vs. 61.2 ± 12.6, p <0.001). A 1-point change in the score for any of the individual cardinal NASH features (i.e. steatosis, inflammation or ballooning) was associated with an increase in SMFIPsoas (all p <0.05). The association between SMFIPsoas and NASH was highly significant even after adjustment for multiple confounders (all p <0.025). After intervention (n = 39), NASH improvement, defined by NAFLD activity score <3 or a 2-point score reduction, was achieved in more than 75% of patients (n = 25 or n = 27, respectively) that had pre-established NASH at inclusion (n = 32) and was associated with a significant decrease in SMFIPsoas (p <0.001). Strikingly, all patients who had ≥11% reduction in SMFIPsoas achieved NASH improvement (14/14, p <0.05). CONCLUSIONS: Muscle fat content, but not muscle mass, is strongly and independently associated with NASH. All individuals who achieved a ≥11% decrease in SMFIPsoas after intervention improved their NASH. These data indicate that muscle fatty infiltration could be a potential marker for (and perhaps a pathophysiological contributor to) NASH. LAY SUMMARY: The fat content in skeletal muscles is highly reflective of the severity of non-alcoholic fatty liver disease (NAFLD) in patients with morbid obesity. In particular, muscle fat content is strongly associated with non-alcoholic steatohepatitis (NASH) and decreases upon NASH improvement. These data indicate that muscle fatty infiltration could be a marker and possible pathophysiological contributor to NASH.


Subject(s)
Adipose Tissue/abnormalities , Non-alcoholic Fatty Liver Disease/etiology , Adipose Tissue/physiopathology , Adult , Analysis of Variance , Cohort Studies , Female , Humans , Logistic Models , Male , Middle Aged , Muscles/abnormalities , Muscles/physiopathology , Non-alcoholic Fatty Liver Disease/epidemiology , Odds Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...