Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L646-L650, 2024 May 01.
Article En | MEDLINE | ID: mdl-38529551

Novel screening techniques for early detection of lung cancer are urgently needed. Profiling circulating tumor cell-free DNA (ctDNA) has emerged as a promising tool for biopsy-free tumor genotyping. However, both the scarcity and short half-life of ctDNA substantially limit the sensitivity and clinical utility of ctDNA detection methodologies. Our discovery that red blood cells (RBCs) sequester mitochondrial DNA opens a new avenue for detecting circulating nucleic acids, as RBCs represent an unrecognized reservoir of circulating nucleic acid. Here, we show that RBCs acquire tumor DNA following coculture with lung cancer cell lines harboring Kirsten rat sarcoma viral oncogene homolog (KRAS) and epidermal growth factor receptor (EGFR) mutations. RBC-bound tumor DNA is detectable in patients with early-stage non-small cell lung cancer (NSCLC) but not in healthy controls by qPCR. Our results collectively uncover a previously unrecognized yet easily accessible reservoir of tumor DNA, offering a promising foundation for future RBC-based tumor diagnostics.NEW & NOTEWORTHY We present a novel method for lung cancer detection by revealing RBCs as a reservoir for tumor DNA, overcoming the limitations of current circulating tumor ctDNA methodologies. By demonstrating that RBCs can capture tumor DNA, including critical mutations found in lung cancer, we provide a promising, biopsy-free avenue for early cancer diagnostics. This discovery opens up exciting possibilities for developing RBC-based diagnostic tools, significantly enhancing the sensitivity and clinical utility of noninvasive cancer detection.


Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Erythrocytes , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Erythrocytes/metabolism , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis , Mutation , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Proto-Oncogene Proteins p21(ras)/genetics , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , DNA, Neoplasm/blood , DNA, Neoplasm/genetics
3.
Clin Lung Cancer ; 25(1): 50-60.e6, 2024 01.
Article En | MEDLINE | ID: mdl-37813713

INTRODUCTION: The patterns of failure (POF) for metastatic non-small-cell lung cancer (mNSCLC) treated with immunotherapy are not well established. METHODS: We conducted a retrospective cohort study of mNSCLC that received first-line pembrolizumab with or without chemotherapy at a single academic center from 2015 to 2021. We defined POF with 2 classifications: 1) local, regional, or distant failure, or 2) failure in existing lesions, new lesions, or a combination. Oligoprogression was defined as disease progression (PD) in ≤3 sites of failure. Overall survival (OS) was measured via Kaplan-Meier and modelled with Cox regression. RESULTS: Of 298 patients identified, 198 had PD. Using POF classification 1, most failures were distant (43.9%) or a combination of locoregional and distant (34.4%). For POF classification 2, failures occurred in a combination of new and existing lesions (45.0%), existing lesions alone (33.3%), or in new lesions only (21.7%). Oligoprogression occurred in 39.9% (n = 79) cases. Median OS was higher in the following: PD in existing lesions vs. new or new + existing lesions (28.7 vs. 20.2 vs. 13.9 months, P < .001) and oligoprogression vs. polyprogression (35.1 vs. 12.2 months, P < .001). In oligoprogression, median OS was better for those who received radiation to all sites of PD (62.2 months) than for those who changed systemic therapy (22.9 months, P = .007). On multivariable analysis, radiation for oligoprogression (HR 0.35, 95% CI: 0.20-0.62, P < .001) was associated with improved OS. CONCLUSIONS: In mNSCLC treated with pembrolizumab, oligoprogression is relatively common. Randomized data are needed to define the benefits of radiation in oligoprogressive mNSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Retrospective Studies , Antibodies, Monoclonal, Humanized
4.
Br J Cancer ; 129(12): 1893-1902, 2023 12.
Article En | MEDLINE | ID: mdl-37789101

The therapeutic landscape for patients with advanced malignancies has changed dramatically over the last twenty years. The growing number of targeted therapies and immunotherapeutic options available have improved response rates and survival for a subset of patients, however determining which patients will experience clinical benefit from these therapies in order to avoid potential toxicities and reduce healthcare costs remains a clinical challenge. Cell-free circulating tumor DNA (ctDNA) is shed by tumor cells into systemic circulation and is already an integral part of routine clinical practice for the non-invasive tumor genotyping in advanced non-small cell lung cancer as well as other malignancies. The short half-life of ctDNA offers a unique opportunity to utilize early on-treatment changes in ctDNA for real-time assessment of therapeutic response and outcome, termed molecular response. Here, we provide a summary and review of the use of molecular response for the prediction of outcomes in patients with advanced cancer, including the current state of science, its application in clinic, and next steps for the development of this predictive tool.


Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Humans , Circulating Tumor DNA/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Biomarkers, Tumor/genetics , Mutation
6.
JCO Precis Oncol ; 7: e2300191, 2023 07.
Article En | MEDLINE | ID: mdl-37499192

PURPOSE: Current guidelines recommend molecular genotyping for patients newly diagnosed with metastatic nonsquamous (mNSq) non-small-cell lung cancer (NSCLC). The association between availability of molecular genotyping before first line (1L) therapy and overall survival (OS) is not known. METHODS: We conducted a real-world cohort study using electronic health records in patients newly diagnosed with mNSq NSCLC. Cox proportional-hazards multivariable regression models were constructed to examine the association between OS and test result availability before 1L therapy, adjusting for covariates. Additional analyses were conducted to assess the consistency and strength of the relationship. Multivariable logistic regression models were used to examine the association between concurrent tissue and plasma testing (v tissue alone) and result availability. RESULTS: Three hundred twenty-six patients were included, 80% (261/326) with results available before 1L (available testing group), and 20% (65/326) without results available (unavailable testing group). With 14.2-month median follow-up, patients in the available testing group had significantly longer OS relative to the unavailable testing group (adjusted hazard ratio, 0.43; 95% CI, 0.30 to 0.62; P < .0001). The adjusted odds of availability of results before 1L therapy was higher with concurrent tissue and plasma testing (v tissue testing alone; adjusted odds ratio, 2.06; 95% CI, 1.09 to 3.90; P = .026). CONCLUSION: Among patients with mNSq NSCLC in a real-world cohort, availability of molecular genotyping results before 1L therapy was associated with significantly better OS. Concurrent tissue and plasma testing was associated with a higher odds of availability of results before 1L therapy. These findings warrant renewed attention to the completion of molecular genotyping before 1L therapy.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Cohort Studies , Genotype , Proportional Hazards Models
8.
JCO Precis Oncol ; 6: e2100372, 2022 08.
Article En | MEDLINE | ID: mdl-35952319

PURPOSE: As immune checkpoint inhibitors (ICI) become increasingly used in frontline settings, identifying early indicators of response is needed. Recent studies suggest a role for circulating tumor DNA (ctDNA) in monitoring response to ICI, but uncertainty exists in the generalizability of these studies. Here, the role of ctDNA for monitoring response to ICI is assessed through a standardized approach by assessing clinical trial data from five independent studies. PATIENTS AND METHODS: Patient-level clinical and ctDNA data were pooled and harmonized from 200 patients across five independent clinical trials investigating the treatment of patients with non-small-cell lung cancer with programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1)-directed monotherapy or in combination with chemotherapy. CtDNA levels were measured using different ctDNA assays across the studies. Maximum variant allele frequencies were calculated using all somatic tumor-derived variants in each unique patient sample to correlate ctDNA changes with overall survival (OS) and progression-free survival (PFS). RESULTS: We observed strong associations between reductions in ctDNA levels from on-treatment liquid biopsies with improved OS (OS; hazard ratio, 2.28; 95% CI, 1.62 to 3.20; P < .001) and PFS (PFS; hazard ratio 1.76; 95% CI, 1.31 to 2.36; P < .001). Changes in the maximum variant allele frequencies ctDNA values showed strong association across different outcomes. CONCLUSION: In this pooled analysis of five independent clinical trials, consistent and robust associations between reductions in ctDNA and outcomes were found across multiple end points assessed in patients with non-small-cell lung cancer treated with an ICI. Additional tumor types, stages, and drug classes should be included in future analyses to further validate this. CtDNA may serve as an important tool in clinical development and an early indicator of treatment benefit.


Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Circulating Tumor DNA/genetics , Clinical Trials as Topic , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Prognosis
10.
Sci Rep ; 12(1): 9993, 2022 06 15.
Article En | MEDLINE | ID: mdl-35705618

We aim to determine the feasibility of a novel radiomic biomarker that can integrate with other established clinical prognostic factors to predict progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) undergoing first-line immunotherapy. Our study includes 107 patients with stage 4 NSCLC treated with pembrolizumab-based therapy (monotherapy: 30%, combination chemotherapy: 70%). The ITK-SNAP software was used for 3D tumor volume segmentation from pre-therapy CT scans. Radiomic features (n = 102) were extracted using the CaPTk software. Impact of heterogeneity introduced by image physical dimensions (voxel spacing parameters) and acquisition parameters (contrast enhancement and CT reconstruction kernel) was mitigated by resampling the images to the minimum voxel spacing parameters and harmonization by a nested ComBat technique. This technique was initialized with radiomic features, clinical factors of age, sex, race, PD-L1 expression, ECOG status, body mass index (BMI), smoking status, recurrence event and months of progression-free survival, and image acquisition parameters as batch variables. Two phenotypes were identified using unsupervised hierarchical clustering of harmonized features. Prognostic factors, including PDL1 expression, ECOG status, BMI and smoking status, were combined with radiomic phenotypes in Cox regression models of PFS and Kaplan Meier (KM) curve-fitting. Cox model based on clinical factors had a c-statistic of 0.57, which increased to 0.63 upon addition of phenotypes derived from harmonized features. There were statistically significant differences in survival outcomes stratified by clinical covariates, as measured by the log-rank test (p = 0.034), which improved upon addition of phenotypes (p = 0.00022). We found that mitigation of heterogeneity by image resampling and nested ComBat harmonization improves prognostic value of phenotypes, resulting in better prediction of PFS when added to other prognostic variables.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immunotherapy/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Progression-Free Survival
11.
JTO Clin Res Rep ; 3(4): 100301, 2022 Apr.
Article En | MEDLINE | ID: mdl-35392653

Introduction: The availability of targeted therapies has transformed the management of advanced NSCLC; however, most patients do not undergo guideline-recommended tumor genotyping. The impact of plasma-based next-generation sequencing (NGS) performed simultaneously with diagnostic biopsy in suspected advanced NSCLC has largely been unexplored. Methods: We performed a prospective cohort study of patients with suspected advanced lung cancer on the basis of cross-sectional imaging results. Blood from the time of biopsy was sequenced using a commercially available 74-gene panel. The primary outcome measure was time to first-line systemic treatment compared with a retrospective cohort of consecutive patients with advanced NSCLC with reflex tissue NGS. Results: We analyzed the NGS results from 110 patients with newly diagnosed advanced NSCLC: cohorts 1 and 2 included 55 patients each and were well balanced regarding baseline demographics. In cohort 1, plasma NGS identified therapeutically informative driver mutations in 32 patients (58%) (13 KRAS [five KRAS G12C], 13 EGFR, two ERRB2, two MET, one BRAF, one RET). The NGS results were available before the first oncology visit in 85% of cohort 1 versus 9% in cohort 2 (p < 0.0001), with more cohort 1 patients receiving a guideline-concordant treatment recommendation at this visit (74% versus 46%, p = 0.005). Time-to-treatment was significantly shorter in cohort 1 compared with cohort 2 (12 versus 20 d, p = 0.003), with a shorter time-to-treatment in patients with specific driver mutations (10 versus 19 d, p = 0.001). Conclusions: Plasma-based NGS performed at the time of diagnostic biopsy in patients with suspected advanced NSCLC is associated with decreased time-to-treatment compared with usual care.

12.
Cancers (Basel) ; 13(23)2021 Nov 28.
Article En | MEDLINE | ID: mdl-34885094

This study tackles interobserver variability with respect to specialty training in manual segmentation of non-small cell lung cancer (NSCLC). Four readers included for segmentation are: a data scientist (BY), a medical student (LS), a radiology trainee (MH), and a specialty-trained radiologist (SK) for a total of 293 patients from two publicly available databases. Sørensen-Dice (SD) coefficients and low rank Pearson correlation coefficients (CC) of 429 radiomics were calculated to assess interobserver variability. Cox proportional hazard (CPH) models and Kaplan-Meier (KM) curves of overall survival (OS) prediction for each dataset were also generated. SD and CC for segmentations demonstrated high similarities, yielding, SD: 0.79 and CC: 0.92 (BY-SK), SD: 0.81 and CC: 0.83 (LS-SK), and SD: 0.84 and CC: 0.91 (MH-SK) in average for both databases, respectively. OS through the maximal CPH model for the two datasets yielded c-statistics of 0.7 (95% CI) and 0.69 (95% CI), while adding radiomic and clinical variables (sex, stage/morphological status, and histology) together. KM curves also showed significant discrimination between high- and low-risk patients (p-value < 0.005). This supports that readers' level of training and clinical experience may not significantly influence the ability to extract accurate radiomic features for NSCLC on CT. This potentially allows flexibility in the training required to produce robust prognostic imaging biomarkers for potential clinical translation.

13.
Front Med (Lausanne) ; 8: 750650, 2021.
Article En | MEDLINE | ID: mdl-34796186

We investigated racial disparities in a 30-day composite outcome of readmission and death among patients admitted across a 5-hospital health system following an index COVID-19 admission. A dataset of 1,174 patients admitted between March 1, 2020 and August 21, 2020 for COVID-19 was retrospectively analyzed for odds of readmission among Black patients compared to all other patients, with sequential adjustment for demographics, index admission characteristics, type of post-acute care, and comorbidities. Tabulated results demonstrated a significantly greater odds of 30-day readmission or death among Black patients (18.0% of Black patients vs. 11.3% of all other patients; Univariate Odds Ratio: 1.71, p = 0.002). Sequential adjustment via logistic regression revealed that the odds of 30-day readmission or death were significantly greater among Black patients after adjustment for demographics, index admission characteristics, and type of post-acute care, but not comorbidities. Stratification by type of post-acute care received on discharge revealed that the same disparity in odds of 30-day readmission or death existed among patients discharged home without home services, but not those discharged to home with home services or to a skilled nursing facility or acute rehab facility. Collectively, the findings suggest that weighing comorbidity burdens in post-acute care decisions may be relevant in addressing racial disparities in 30-day outcomes following discharge from an index COVID-19 admission.

14.
J Mol Diagn ; 23(11): 1545-1552, 2021 11.
Article En | MEDLINE | ID: mdl-34454115

Circulating cell-free DNA (ccfDNA) is used increasingly as a cancer biomarker for prognostication, as a correlate for tumor volume, or as input for downstream molecular analysis. Determining optimal blood processing and ccfDNA quantification are crucial for ccfDNA to serve as an accurate biomarker as it moves into the clinical realm. Whole blood was collected from 50 subjects, processed to plasma, and used immediately or frozen at -80°C. Plasma ccfDNA was extracted and concentration was assessed by real-time quantitative PCR (qPCR), fluorimetry, and droplet digital PCR (ddPCR). For the 24 plasma samples from metastatic pancreatic cancer patients, the variant allele fractions (VAF) of KRAS G12/13 pathogenic variants in circulating tumor DNA (ctDNA) were measured by ddPCR. Using a high-speed (16,000 × g) or slower-speed (4100 × g) second centrifugation step showed no difference in ccfDNA yield or ctDNA VAF. A two- versus three-spin centrifugation protocol also showed no difference in ccfDNA yield or ctDNA VAF. A higher yield was observed from fresh versus frozen plasma by qPCR and fluorimetry, whereas a higher yield was observed for frozen versus fresh plasma by ddPCR, however, no difference was observed in ctDNA VAF. Overall, our findings suggest factors to consider when implementing a ccfDNA extraction and quantification workflow in a research or clinical setting.


Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/genetics , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Molecular Diagnostic Techniques/methods , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Real-Time Polymerase Chain Reaction/methods , Alleles , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blood Specimen Collection/methods , Carcinoma, Pancreatic Ductal/pathology , Case-Control Studies , Circulating Tumor DNA/isolation & purification , Cohort Studies , Humans , Mutation , Neoplasm Metastasis , Pancreatic Neoplasms/pathology
15.
Oncologist ; 26(10): e1812-e1821, 2021 10.
Article En | MEDLINE | ID: mdl-34216176

Plasma cell-free DNA (cfDNA) genotyping is an alternative to tissue genotyping, particularly when tissue specimens are insufficient or unavailable, and provides critical information that can be used to guide treatment decisions in managing patients with non-small cell lung cancer (NSCLC). In this article, we review the evolution of plasma cfDNA genotyping from an emerging concept, through development of analytical methods, to its clinical applications as a standard-of-care tool in NSCLC. The number of driver or resistance mutations recommended for testing in NSCLC continues to increase. Because of the expanding list of therapeutically relevant variants, comprehensive testing to investigate larger regions of multiple genes in a single run is often preferable and saves on time and cost, compared with performing serial single-gene assays. Recent advances in nucleic acid next-generation sequencing have led to a rapid expansion in cfDNA genotyping technologies. Analytic assays that have received regulatory approval are now routinely used as diagnostic companions in the setting of metastatic NSCLC. As the demand for plasma-based technologies increases, more regulatory approvals of cfDNA genotyping assays are expected in the future. Plasma cfDNA genotyping is currently aiding oncologists in the delivery of personalized care by facilitating matching of patients with targeted therapy and monitoring emergence of resistance to therapy in NSCLC. Further advances currently underway to increase assay sensitivity and specificity will potentially expand the use of plasma cfDNA genotyping in early cancer detection, monitoring response to therapy, detection of minimal residual disease, and measurement of tumor mutational burden in NSCLC. IMPLICATIONS FOR PRACTICE: Plasma cell-free DNA (cfDNA) genotyping offers an alternative to tissue genotyping, particularly when tissue specimens are insufficient or unavailable. Advances in cfDNA genotyping technologies have led to analytic assays that are now routinely used to aid oncologists in the delivery of personalized care by facilitating matching of patients with targeted therapy and monitoring emergence of resistance to therapy. Further advances underway to increase assay sensitivity and specificity will potentially expand the use of plasma cfDNA genotyping in early cancer detection, monitoring response to therapy, detection of minimal residual disease, and evaluation of tumor mutational burden in non-small cell lung cancer.


Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/genetics , Genotype , Humans , Lung Neoplasms/genetics , Mutation
16.
Article En | MEDLINE | ID: mdl-34095713

Although the majority of patients with metastatic non-small-cell lung cancer (mNSCLC) lacking a detectable targetable mutation will receive pembrolizumab-based therapy in the frontline setting, predicting which patients will experience a durable clinical benefit (DCB) remains challenging. MATERIALS AND METHODS: Patients with mNSCLC receiving pembrolizumab monotherapy or in combination with chemotherapy underwent a 74-gene next-generation sequencing panel on blood samples obtained at baseline and at 9 weeks. The change in circulating tumor DNA levels on-therapy (molecular response) was quantified using a ratio calculation with response defined by a > 50% decrease in mean variant allele fraction. Patient response was assessed using RECIST 1.1; DCB was defined as complete or partial response or stable disease that lasted > 6 months. Progression-free survival and overall survival were recorded. RESULTS: Among 67 patients, 51 (76.1%) had > 1 variant detected at a variant allele fraction > 0.3% and thus were eligible for calculation of molecular response from paired baseline and 9-week samples. Molecular response values were significantly lower in patients with an objective radiologic response (log mean 1.25% v 27.7%, P < .001). Patients achieving a DCB had significantly lower molecular response values compared to patients with no durable benefit (log mean 3.5% v 49.4%, P < .001). Molecular responders had significantly longer progression-free survival (hazard ratio, 0.25; 95% CI, 0.13 to 0.50) and overall survival (hazard ratio, 0.27; 95% CI, 0.12 to 0.64) compared with molecular nonresponders. CONCLUSION: Molecular response assessment using circulating tumor DNA may serve as a noninvasive, on-therapy predictor of response to pembrolizumab-based therapy in addition to standard of care imaging in mNSCLC. This strategy requires validation in independent prospective studies.


Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/blood , High-Throughput Nucleotide Sequencing , Lung Neoplasms/blood , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Progression-Free Survival , Survival Rate , Treatment Outcome
17.
Sci Rep ; 11(1): 9984, 2021 05 11.
Article En | MEDLINE | ID: mdl-33976268

Among non-small cell lung cancer (NSCLC) patients with therapeutically targetable tumor mutations in epidermal growth factor receptor (EGFR), not all patients respond to targeted therapy. Combining circulating-tumor DNA (ctDNA), clinical variables, and radiomic phenotypes may improve prediction of EGFR-targeted therapy outcomes for NSCLC. This single-center retrospective study included 40 EGFR-mutant advanced NSCLC patients treated with EGFR-targeted therapy. ctDNA data included number of mutations and detection of EGFR T790M. Clinical data included age, smoking status, and ECOG performance status. Baseline chest CT scans were analyzed to extract 429 radiomic features from each primary tumor. Unsupervised hierarchical clustering was used to group tumors into phenotypes. Kaplan-Meier (K-M) curves and Cox proportional hazards regression were modeled for progression-free survival (PFS) and overall survival (OS). Likelihood ratio test (LRT) was used to compare fit between models. Among 40 patients (73% women, median age 62 years), consensus clustering identified two radiomic phenotypes. For PFS, the model combining radiomic phenotypes with ctDNA and clinical variables had c-statistic of 0.77 and a better fit (LRT p = 0.01) than the model with clinical and ctDNA variables alone with a c-statistic of 0.73. For OS, adding radiomic phenotypes resulted in c-statistic of 0.83 versus 0.80 when using clinical and ctDNA variables (LRT p = 0.08). Both models showed separation of K-M curves dichotomized by median prognostic score (p < 0.005). Combining radiomic phenotypes, ctDNA, and clinical variables may enhance precision oncology approaches to managing advanced non-small cell lung cancer with EGFR mutations.


Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Genes, erbB-1 , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/analysis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Feasibility Studies , Female , Humans , Liquid Biopsy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Pharmacogenomic Variants , Phenotype , Retrospective Studies
19.
Chest ; 159(2): e107-e113, 2021 02.
Article En | MEDLINE | ID: mdl-33563452

CASE PRESENTATION: A 53-year-old man presented to the ED at a time of low severe acute respiratory syndrome coronavirus 2, also known as coronavirus disease 2019 (COVID-19), prevalence and reported 2 weeks of progressive shortness of breath, dry cough, headache, myalgias, diarrhea, and recurrent low-grade fevers to 39°C for 1 week with several days of recorded peripheral capillary oxygen saturation of 80% to 90% (room air) on home pulse oximeter. Five days earlier, he had visited an urgent care center where a routine respiratory viral panel was reportedly negative. A COVID-19 reverse transcriptase polymerase chain reaction test result was pending at the time of ED visit. He reported a past medical history of gastroesophageal reflux disease that was treated with famotidine. Travel history included an out-of-state trip 3 weeks earlier, but no recent international travel.


COVID-19/diagnostic imaging , Lung/diagnostic imaging , Bacteremia/complications , COVID-19/complications , COVID-19/physiopathology , COVID-19 Nucleic Acid Testing , Cerebellar Diseases/complications , Cerebellar Diseases/diagnostic imaging , Cough/physiopathology , Diarrhea/physiopathology , Disease Progression , Dyspnea/physiopathology , Emergency Service, Hospital , Fever/physiopathology , Headache/physiopathology , Humans , Ischemic Stroke/complications , Ischemic Stroke/diagnostic imaging , Lymphopenia/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Myalgia/physiopathology , Oximetry , Pneumonia, Staphylococcal/complications , Radiography, Thoracic , SARS-CoV-2 , Staphylococcal Infections/complications , Tomography, X-Ray Computed
...