Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39386545

ABSTRACT

Caloric restriction (CR) is a widely recognized geroprotective intervention that slows or prevents Alzheimer's disease (AD) in animal models. CR is typically implemented via feeding mice a single meal per day; as CR mice rapidly consume their food, they are subject to a prolonged fast between meals. While CR has been shown to improve metabolic and cognitive functions and suppress pathological markers in AD mouse models, the specific contributions of fasting versus calorie reduction remains unclear. Here, we investigated the contribution of fasting and energy restriction to the beneficial effects of CR on AD progression. To test this, we placed 6-month-old 3xTg mice on one of several diet regimens, allowing us to dissect the effects of calories and fasting on metabolism, AD pathology, and cognition. We find that energy restriction alone, without fasting, was sufficient to improve glucose tolerance and reduce adiposity in both sexes, and to reduce Aß plaques and improve aspects of cognitive performance in females. However, we find that a prolonged fast between meals is necessary for many of the benefits of CR, including improved insulin sensitivity, reduced phosphorylation of tau, decreased neuroinflammation, inhibition of mTORC1 signaling, and activation of autophagy, as well as for the full cognitive benefits of CR. Finally, we find that fasting is essential for the benefits of CR on survival in male 3xTg mice. Overall, our results demonstrate that fasting is required for the full benefits of a CR diet on the development and progression of AD in 3xTg mice, and suggest that both when and how much we eat influences the development and progress of AD.

2.
Nat Commun ; 15(1): 5217, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890307

ABSTRACT

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.


Subject(s)
Alzheimer Disease , Brain , Diet, Protein-Restricted , Disease Models, Animal , Disease Progression , Mice, Transgenic , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Female , Male , Mice , Brain/metabolism , Brain/pathology , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy , Glucose Intolerance/metabolism , Sphingolipids/metabolism , Cognition , Mice, Inbred C57BL
3.
Res Sq ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37790423

ABSTRACT

Over the last decade, it has become evident that dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and we and others have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice. We found that PR induces sex-specific alterations in circulating metabolites and in the brain lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

SELECTION OF CITATIONS
SEARCH DETAIL