Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Adv Healthc Mater ; : e2303477, 2024 May 20.
Article En | MEDLINE | ID: mdl-38768494

Here an electrical stimulation system is described for maturing microfiber-shaped cardiac tissue (cardiac microfibers, CMFs). The system enables stable culturing of CMFs with electrical stimulation by placing the tissue between electrodes. The electrical stimulation device provides an electric field covering whole CMFs within the stimulation area and can control the beating of the cardiac microfibers. In addition, CMFs under electrical stimulation with different frequencies are examined to evaluate the maturation levels by their sarcomere lengths, electrophysiological characteristics, and gene expression. Sarcomere elongation (14% increase compared to control) is observed at day 10, and a significant upregulation of electrodynamic properties such as gap junction protein alpha 1 (GJA1) and potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) (maximum fourfold increase compared to control) is observed at day 30. These results suggest that electrically stimulated cultures can accelerate the maturation of microfiber-shaped cardiac tissues compared to those without electrical stimulation. This model will contribute to the pathological research of unexplained cardiac diseases and pharmacologic testing by stably constructing matured CMFs.

2.
Stem Cell Reports ; 19(5): 710-728, 2024 May 14.
Article En | MEDLINE | ID: mdl-38701780

Heterogeneity among both primed and naive pluripotent stem cell lines remains a major unresolved problem. Here we show that expressing the maternal-specific linker histone H1FOO fused to a destabilizing domain (H1FOO-DD), together with OCT4, SOX2, KLF4, and LMYC, in human somatic cells improves the quality of reprogramming to both primed and naive pluripotency. H1FOO-DD expression was associated with altered chromatin accessibility around pluripotency genes and with suppression of the innate immune response. Notably, H1FOO-DD generates naive induced pluripotent stem cells with lower variation in transcriptome and methylome among clones and a more uniform and superior differentiation potency. Furthermore, we elucidated that upregulation of FKBP1A, driven by these five factors, plays a key role in H1FOO-DD-mediated reprogramming.


Cellular Reprogramming , Histones , Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Cellular Reprogramming/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Histones/metabolism , Cell Differentiation/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Chromatin/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome
3.
Circulation ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38666382

BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.

4.
J Mol Cell Cardiol ; 187: 90-100, 2024 02.
Article En | MEDLINE | ID: mdl-38331557

Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.


Heart Failure , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Humans , Cell Differentiation , Myocardium , Myocytes, Cardiac/transplantation , Heart Failure/therapy
5.
Cell Rep Methods ; 3(12): 100666, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38113855

Three-dimensional (3D) cultures are known to more closely mimic in vivo conditions compared with 2D cultures. Cardiac spheroids (CSs) and organoids (COs) are useful for 3D tissue engineering and are advantageous for their simplicity and mass production for regenerative therapy and drug discovery. Herein, we describe a large-scale method for producing homogeneous human induced pluripotent stem cell (hiPSC)-derived CSs (hiPSC-CSs) and COs without scaffolds using a porous 3D microwell substratum with a suction system. Our method has many advantages, such as increased efficiency and improved functionality, homogeneity, and sphericity of hiPSC-CSs. Moreover, we have developed a substratum on a clinically relevant large scale for regenerative therapy and have succeeded in producing approximately 40,000 hiPSC-CSs with high sphericity at once. Furthermore, we efficiently produced a fused CO model consisting of hiPSC-derived atrial and ventricular cardiomyocytes localized on opposite sides of one organoid. This method will facilitate progress toward hiPSC-based clinical applications.


Induced Pluripotent Stem Cells , Humans , Organoids , Tissue Engineering , Myocytes, Cardiac , Heart Atria
6.
Mol Ther Nucleic Acids ; 34: 102060, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38028197

Exon-skipping therapy is a promising treatment strategy for Duchenne muscular dystrophy (DMD), which is caused by loss-of-function mutations in the DMD gene encoding dystrophin, leading to progressive cardiomyopathy. In-frame deletion of exons 3-9 (Δ3-9), manifesting a very mild clinical phenotype, is a potential targeted reading frame for exon-skipping by targeting actin-binding domain 1 (ABD1); however, the efficacy of this approach for DMD cardiomyopathy remains uncertain. In this study, we compared three isogenic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing Δ3-9, frameshifting Δ3-7, or intact DMD. RNA sequencing revealed a resemblance in the expression patterns of mechano-transduction-related genes between Δ3-9 and wild-type samples. Furthermore, we observed similar electrophysiological properties between Δ3-9 and wild-type hiPSC-CMs; Δ3-7 hiPSC-CMs showed electrophysiological alterations with accelerated CaMKII activation. Consistently, Δ3-9 hiPSC-CMs expressed substantial internally truncated dystrophin protein, resulting in maintaining F-actin binding and desmin retention. Antisense oligonucleotides targeting exon 8 efficiently induced skipping exons 8-9 to restore functional dystrophin and electrophysiological parameters in Δ3-7 hiPSC-CMs, bringing the cell characteristics closer to those of Δ3-9 hiPSC-CMs. Collectively, exon-skipping targeting ABD1 to convert the reading frame to Δ3-9 may become a promising therapy for DMD cardiomyopathy.

7.
Adv Sci (Weinh) ; 10(35): e2301831, 2023 Dec.
Article En | MEDLINE | ID: mdl-37849230

In vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.


Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Hydrogels , Mechanical Phenomena , Muscle Contraction
8.
Stem Cell Res Ther ; 14(1): 240, 2023 09 07.
Article En | MEDLINE | ID: mdl-37679796

BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat heart diseases; however, the optimal maturity of hiPSC-CMs for effective regenerative medicine remains unclear. We aimed to investigate the benefits of long-term cultured mature hiPSC-CMs in injured rat hearts. METHODS: Cardiomyocytes were differentiated from hiPSCs via monolayer culturing, and the cells were harvested on day 28 or 56 (D28-CMs or D56-CMs, respectively) after differentiation. We transplanted D28-CMs or D56-CMs into the hearts of rat myocardial infarction models and examined cell retention and engraftment via in vivo bioluminescence imaging and histological analysis. We performed transcriptomic sequencing analysis to elucidate the genetic profiles before and after hiPSC-CM transplantation. RESULTS: Upregulated expression of mature sarcomere genes in vitro was observed in D56-CMs compared with D28-CMs. In vivo bioluminescence imaging studies revealed increased bioluminescence intensity of D56-CMs at 8 and 12 weeks post-transplantation. Histological and immunohistochemical analyses showed that D56-CMs promoted engraftment and maturation in the graft area at 12 weeks post-transplantation. Notably, D56-CMs consistently promoted microvessel formation in the graft area from 1 to 12 weeks post-transplantation. Transcriptomic sequencing analysis revealed that compared with the engrafted D28-CMs, the engrafted D56-CMs enriched genes related to blood vessel regulation at 12 weeks post-transplantation. As shown by transcriptomic and western blot analyses, the expression of a small heat shock protein, alpha-B crystallin (CRYAB), was significantly upregulated in D56-CMs compared with D28-CMs. Endothelial cell migration was inhibited by small interfering RNA-mediated knockdown of CRYAB when co-cultured with D56-CMs in vitro. Furthermore, CRYAB overexpression enhanced angiogenesis in the D28-CM grafts at 4 weeks post-transplantation. CONCLUSIONS: Long-term cultured mature hiPSC-CMs promoted engraftment, maturation and angiogenesis post-transplantation in infarcted rat hearts. CRYAB, which was highly expressed in D56-CMs, was identified as an angiogenic factor from mature hiPSC-CMs. This study revealed the benefits of long-term culture, which may enhance the therapeutic potential of hiPSC-CMs.


Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Rats , Blotting, Western , Cell Differentiation , Cell Movement
9.
Stem Cell Reports ; 18(10): 1925-1939, 2023 10 10.
Article En | MEDLINE | ID: mdl-37738969

Monitoring cardiac differentiation and maturation from human pluripotent stem cells (hPSCs) and detecting residual undifferentiated hPSCs are indispensable for the development of cardiac regenerative therapy. MicroRNA (miRNA) is secreted from cells into the extracellular space, and its role as a biomarker is attracting attention. Here, we performed an miRNA array analysis of supernatants during the process of cardiac differentiation and maturation from hPSCs. We demonstrated that the quantification of extracellular miR-489-3p and miR-1/133a-3p levels enabled the monitoring of mesoderm and cardiac differentiation, respectively, even in clinical-grade mass culture systems. Moreover, extracellular let-7c-5p levels showed the greatest increase with cardiac maturation during long-term culture. We also verified that residual undifferentiated hPSCs in hPSC-derived cardiomyocytes (hPSC-CMs) were detectable by measuring miR-302b-3p expression, with a detection sensitivity of 0.01%. Collectively, we demonstrate that our method of seamlessly monitoring specific miRNAs secreted into the supernatant is non-destructive and effective for the quality evaluation of hPSC-CMs.


MicroRNAs , Pluripotent Stem Cells , Humans , MicroRNAs/genetics , Cell Differentiation/genetics , Anti-Arrhythmia Agents , Biological Transport , Cardiotonic Agents
10.
Biomaterials ; 299: 122174, 2023 08.
Article En | MEDLINE | ID: mdl-37285642

Although the extracellular matrix (ECM) plays essential roles in heart tissue engineering, the optimal ECM components for heart tissue organization have not previously been elucidated. Here, we focused on the main ECM component, fibrillar collagen, and analyzed the effects of collagens on heart tissue engineering, by comparing the use of porcine heart-derived collagen and other organ-derived collagens in generating engineered heart tissue (EHT). We demonstrate that heart-derived collagen induces better contraction and relaxation of human induced pluripotent stem cell-derived EHT (hiPSC-EHT) and that hiPSC-EHT with heart-derived collagen exhibit more mature profiles than those with collagens from other organs. Further, we found that collagen fibril formation and gel stiffness influence the contraction, relaxation, and maturation of hiPSC-EHT, suggesting the importance of collagen types III and type V, which are relatively abundant in the heart. Thus, we demonstrate the effectiveness of organ-specific collagens in tissue engineering and drug discovery.


Induced Pluripotent Stem Cells , Tissue Engineering , Animals , Swine , Humans , Myocytes, Cardiac , Collagen/pharmacology , Extracellular Matrix
11.
J Card Fail ; 29(4): 503-513, 2023 04.
Article En | MEDLINE | ID: mdl-37059512

Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.


Heart Failure , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Humans , Heart Failure/surgery , Cell Differentiation , Myocytes, Cardiac
13.
J Mol Cell Cardiol ; 176: 11-20, 2023 03.
Article En | MEDLINE | ID: mdl-36681267

Human pluripotent stem cells (hPSCs) are currently used in clinical applications such as cardiac regenerative therapy, studying disease models, and drug screening for heart failure. Transplantation of hPSC-derived cardiomyocytes (hPSC-CMs) can be used as an alternative therapy for heart transplantation. In contrast to differentiated somatic cells, hPSCs possess unique metabolic programs to maintain pluripotency, and understanding their metabolic features can contribute to the development of technologies that can be useful for their clinical applications. The production of hPSC-CMs requires stepwise specification during embryonic development and metabolic regulation is crucial for proper embryonic development. These metabolic features have been applied to hPSC-CM production methods, such as mesoderm induction, specifications for cardiac progenitors, and their maturation. This review describes the metabolic programs in hPSCs and the metabolic regulation in hPSC-CM production for cardiac regenerative therapy.


Heart Transplantation , Pluripotent Stem Cells , Female , Pregnancy , Humans , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Cell Differentiation , Drug Evaluation, Preclinical
14.
J Mol Cell Cardiol ; 174: 77-87, 2023 Jan.
Article En | MEDLINE | ID: mdl-36403760

Advances in stem cell biology have facilitated cardiac regeneration, and many animal studies and several initial clinical trials have been conducted using human pluripotent stem cell-derived cardiomyocytes (PSC-CMs). Most preclinical and clinical studies have typically transplanted PSC-CMs via the following two distinct approaches: direct intramyocardial injection or epicardial delivery of engineered heart tissue. Both approaches present common disadvantages, including a mandatory thoracotomy and poor engraftment. Furthermore, a standard transplantation approach has yet to be established. In this study, we tested the feasibility of performing intracoronary administration of PSC-CMs based on a commonly used method of transplanting somatic stem cells. Six male cynomolgus monkeys underwent intracoronary administration of dispersed human PSC-CMs or PSC-CM aggregates, which are called cardiac spheroids, with multiple cell dosages. The recipient animals were sacrificed at 4 weeks post-transplantation for histological analysis. Intracoronary administration of dispersed human PSC-CMs in the cynomolgus monkeys did not lead to coronary embolism or graft survival. Although the transplanted cardiac spheroids became partially engrafted, they also induced scar formation due to cardiac ischemic injury. Cardiac engraftment and scar formation were reasonably consistent with the spheroid size or cell dosage. These findings indicate that intracoronary transplantation of PSC-CMs is an inefficient therapeutic approach.


Myocytes, Cardiac , Pluripotent Stem Cells , Animals , Humans , Male , Cicatrix/pathology , Macaca fascicularis , Myocytes, Cardiac/pathology , Pluripotent Stem Cells/pathology
15.
STAR Protoc ; 3(2): 101360, 2022 06 17.
Article En | MEDLINE | ID: mdl-35516845

Here we describe a protocol to obtain highly pure cardiomyocytes and neurons from human induced pluripotent stem cells (hiPSCs) via metabolic selection processes. Compared to conventional purification protocols, this approach is easier to perform and scale up and more cost-efficient. The protocol can be applied to hiPSCs and human embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Tohyama et al. (2016) and Tanosaki et al. (2020).


Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation/physiology , Fatty Acids/pharmacology , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/physiology , Neurons
16.
Cell Prolif ; 55(8): e13248, 2022 Aug.
Article En | MEDLINE | ID: mdl-35534945

Basic research on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for cardiac regenerative therapy is one of the most active and complex fields to achieve this alternative to heart transplantation and requires the integration of medicine, science, and engineering. Mortality in patients with heart failure remains high worldwide. Although heart transplantation is the sole strategy for treating severe heart failure, the number of donors is limited. Therefore, hPSC-derived CM (hPSC-CM) transplantation is expected to replace heart transplantation. To achieve this goal, for basic research, various issues should be considered, including how to induce hPSC proliferation efficiently for cardiac differentiation, induce hPSC-CMs, eliminate residual undifferentiated hPSCs and non-CMs, and assess for the presence of residual undifferentiated hPSCs in vitro and in vivo. In this review, we discuss the current stage of resolving these issues and future directions for realizing hPSC-based cardiac regenerative therapy.


Heart Failure , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Humans , Myocytes, Cardiac
17.
STAR Protoc ; 3(2): 101341, 2022 06 17.
Article En | MEDLINE | ID: mdl-35496810

We describe a protocol for the efficient culture of human pluripotent stem cells (hPSCs) by supplementing conventional culture medium with L-tryptophan (TRP). TRP is an essential amino acid that is widely available at an affordable cost, thereby allowing cost-effective proliferation of hPSCs compared to using a conventional medium alone. Here, we describe the steps for enhanced proliferation of hPSCs from dermal fibroblasts or peripheral blood cells, but the protocol can be applied to any hPSCs. For complete details on the use and execution of this protocol, please refer to Someya et al. (2021).


Pluripotent Stem Cells , Tryptophan , Cell Culture Techniques/methods , Cell Proliferation , Culture Media/pharmacology , Humans , Tryptophan/pharmacology
18.
Front Cell Dev Biol ; 10: 855763, 2022.
Article En | MEDLINE | ID: mdl-35433691

The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.

19.
Keio J Med ; 71(3): 55-61, 2022 Sep 25.
Article En | MEDLINE | ID: mdl-35082186

Pluripotent stem cells (PSCs), which include embryonic stem cells and induced pluripotent stem cells, have the potential for unlimited self-renewal and proliferation and the ability to differentiate into all three embryonic germ layers. Human PSCs (hPSCs) are used in drug discovery screening, disease models, and regenerative medicine. These cells maintain a transcriptional regulatory network based on a set of unique transcription factors to maintain their stem cell properties. Downstream of such transcriptional regulatory networks, various stem cell-specific metabolic programs are used to produce energy and metabolites as necessary. hPSCs and differentiated cells utilize different metabolic programs for self-renewal ability and maintenance of quiescence. Understanding the different metabolic features of hPSCs and differentiated cells can contribute to the development of technologies that are useful for regenerative medicine, such as the purification of differentiated cells. This review describes the unique metabolic programs active in hPSCs and their differences from somatic cells, with a focus on cardiomyocytes.


Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Germ Layers , Humans , Myocytes, Cardiac , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
J Mol Cell Cardiol ; 164: 83-91, 2022 03.
Article En | MEDLINE | ID: mdl-34822838

The emergence of human induced pluripotent stem cells (hiPSCs) has revealed the potential for curing end-stage heart failure. Indeed, transplantation of hiPSC-derived cardiomyocytes (hiPSC-CMs) may have applications as a replacement for heart transplantation and conventional regenerative therapies. However, there are several challenges that still must be overcome for clinical applications, including large-scale production of hiPSCs and hiPSC-CMs, elimination of residual hiPSCs, purification of hiPSC-CMs, maturation of hiPSC-CMs, efficient engraftment of transplanted hiPSC-CMs, development of an injection device, and avoidance of post-transplant arrhythmia and immunological rejection. Thus, we developed several technologies based on understanding of the metabolic profiles of hiPSCs and hiPSC derivatives. In this review, we outline how to overcome these hurdles to realize the transplantation of hiPSC-CMs in patients with heart failure and introduce cutting-edge findings and perspectives for future regenerative therapy.


Heart Failure , Induced Pluripotent Stem Cells , Cell Differentiation , Heart Failure/metabolism , Heart Failure/therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism
...