Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Physiol ; 601(9): 1655-1673, 2023 05.
Article in English | MEDLINE | ID: mdl-36625071

ABSTRACT

The Transient Receptor Potential Vanilloid 4 (TRPV4) channel has been shown to function in many physiological and pathophysiological processes. Despite abundant information on its importance in physiology, very few endogenous agonists for this channel have been described, and very few underlying mechanisms for its activation have been clarified. TRPV4 is expressed by several types of cells, such as vascular endothelial, and skin and lung epithelial cells, where it plays pivotal roles in their function. In the present study, we show that TRPV4 is activated by lysophosphatidic acid (LPA) in both endogenous and heterologous expression systems, pinpointing this molecule as one of the few known endogenous agonists for TRPV4. Importantly, LPA is a bioactive glycerophospholipid, relevant in several physiological conditions, including inflammation and vascular function, where TRPV4 has also been found to be essential. Here we also provide mechanistic details of the activation of TRPV4 by LPA and another glycerophospholipid, lysophosphatidylcholine (LPC), and show that LPA directly interacts with both the N- and C-terminal regions of TRPV4 to activate this channel. Moreover, we show that LPC activates TRPV4 by producing an open state with a different single-channel conductance to that observed with LPA. Our data suggest that the activation of TRPV4 can be finely tuned in response to different endogenous lipids, highlighting this phenomenon as a regulator of cell and organismal physiology. KEY POINTS: The Transient Receptor Potential Vaniloid (TRPV) 4 ion channel is a widely distributed protein with important roles in normal and disease physiology for which few endogenous ligands are known. TRPV4 is activated by a bioactive lipid, lysophosphatidic acid (LPA) 18:1, in a dose-dependent manner, in both a primary and a heterologous expression system. Activation of TRPV4 by LPA18:1 requires residues in the N- and C-termini of the ion channel. Single-channel recordings show that TRPV4 is activated with a decreased current amplitude (conductance) in the presence of lysophosphatidylcholine (LPC) 18:1, while LPA18:1 and GSK101 activate the channel with a larger single-channel amplitude. Distinct single-channel amplitudes produced by LPA18:1 and LPC18:1 could differentially modulate the responses of the cells expressing TRPV4 under different physiological conditions.


Subject(s)
Transient Receptor Potential Channels , TRPV Cation Channels/metabolism , Lysophosphatidylcholines/pharmacology , Lysophospholipids/pharmacology
2.
Viruses ; 14(11)2022 11 08.
Article in English | MEDLINE | ID: mdl-36366566

ABSTRACT

Post-translational regulation of proteins has emerged as a central topic of research in the field of functional proteomics. Post-translational modifications (PTMs) dynamically control the activities of proteins and are involved in a wide range of biological processes. Crosstalk between different types of PTMs represents a key mechanism of regulation and signaling. Due to the current pandemic of the novel and dangerous SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) virus, here we present an in silico analysis of different types of PTMs in structural proteins of coronaviruses. A dataset of PTM sites was studied at three levels: conservation analysis, mutational analysis and crosstalk analysis. We identified two sets of PTMs which could have important functional roles in the regulation of the structural proteins of coronaviruses. Additionally, we found seven interesting signals of potential crosstalk events. These results reveal a higher level of complexity in the mechanisms of post-translational regulation of coronaviral proteins and provide new insights into the adaptation process of the SARS-CoV-2 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Proteins/metabolism , Pandemics , Protein Processing, Post-Translational
3.
Int Microbiol ; 25(3): 639-647, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35597864

ABSTRACT

In addition to the UPR pathway, yeast cells require components of the HOG pathway to respond to ER stress. In this work, we found that unphosphorylated Sln1 and Ssk1 are required to mount an appropriate response to Tn. We also found that the MAPKKKs Ssk2 participates in the Tn response, but its osmo-redundant protein Ssk22 does not. We also found that the Pbs2 docking sites for Ssk2 (RDS-I and KD) are partially dispensable when mutated separately; however, the prevention of Ssk2 binding to Pbs2, by the simultaneous mutation of RDS-I and KD, caused strong sensitivity to Tn. In agreement with the lack of Hog1 phosphorylation during Tn treatment, a moderate resistance to Tn is obtained when a Pbs2 version lacking its kinase activity is expressed; however, the presence of mutual Pbs2-Hog1 docking sites is essential for the Tn response. Finally, we detected that Tn induced a transcriptional activation of some components of the SLN1 branch. These results indicate that the Tn response requires a complex formed by the MAPK module and components of the SLN1 branch but not their canonical osmoregulatory activities.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Endoplasmic Reticulum Stress , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Tunicamycin/metabolism , Tunicamycin/pharmacology
4.
Int J Mol Sci ; 21(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481620

ABSTRACT

Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.


Subject(s)
TRPV Cation Channels/physiology , Animals , Calcium/metabolism , Cattle , Endothelium, Vascular/metabolism , Humans , Kidney/metabolism , Mice , Microcirculation , Pain/metabolism , Permeability , Prognosis , Protein Domains , Rats , Retinal Vessels , Skin/metabolism
5.
Channels (Austin) ; 13(1): 207-226, 2019 12.
Article in English | MEDLINE | ID: mdl-31184289

ABSTRACT

Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.


Subject(s)
Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/metabolism , Animals , Humans , Multigene Family , Protein Conformation , Signal Transduction , Transient Receptor Potential Channels/genetics
6.
Cells ; 7(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110882

ABSTRACT

Eukaryotic cells have evolved signalling pathways that allow adaptation to harmful conditions that disrupt endoplasmic reticulum (ER) homeostasis. When the function of the ER is compromised in a condition known as ER stress, the cell triggers the unfolded protein response (UPR) in order to restore ER homeostasis. Accumulation of misfolded proteins due to stress conditions activates the UPR pathway. In mammalian cells, the UPR is composed of three branches, each containing an ER sensor (PERK, ATF6 and IRE1). However, in yeast species, the only sensor present is the inositol-requiring enzyme Ire1. To cope with unfolded protein accumulation, Ire1 triggers either a transcriptional response mediated by a transcriptional factor that belongs to the bZIP transcription factor family or an mRNA degradation process. In this review, we address the current knowledge of the UPR pathway in several yeast species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida glabrata, Cryptococcus neoformans, and Candida albicans. We also include unpublished data on the UPR pathway of the budding yeast Kluyveromyces lactis. We describe the basic components of the UPR pathway along with similarities and differences in the UPR mechanism that are present in these yeast species.

7.
FEBS J ; 284(5): 814-830, 2017 03.
Article in English | MEDLINE | ID: mdl-28109174

ABSTRACT

The mitochondrial proteome is mostly composed of nuclear-encoded proteins. Such polypeptides are synthesized with signals that guide their intracellular transport to the surface of the organelle and later within the different mitochondrial subcompartments until they reach their functional destination. It has been suggested that the nascent-polypeptide associated complex (NAC) - a cytosolic chaperone that recognizes nascent chains on translationally active ribosomes - has a role in the import of nuclear-encoded mitochondrial proteins. However, the molecular mechanisms that regulate the NAC-mediated cotranslational import are still not clear. Here, we show that a particular NAC heterodimer formed by subunits α and ß' in Saccharomyces cerevisiae is specifically involved in the process of mitochondrial import and functionally cooperates with Sam37, an outer membrane protein subunit of the sorting and assembly machinery complex. Mutants in both components display growth defects, incorrectly accumulate precursor forms of mitochondrial proteins in the cytosol, and have an altered mitochondrial protein content. We propose that αß'-NAC and Sam37 are members of the system that recognizes mitochondrial proteins at early stages of their synthesis, escorting them to the import machinery of mitochondria.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport , Cytosol/chemistry , Cytosol/metabolism , Membrane Proteins/chemistry , Mitochondria/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Molecular Chaperones/chemistry , Protein Biosynthesis/genetics , Protein Subunits/chemistry , Protein Subunits/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry
8.
FEMS Yeast Res ; 6(3): 336-44, 2006 May.
Article in English | MEDLINE | ID: mdl-16630274

ABSTRACT

The mating pheromone response pathway in Saccharomyces cerevisiae is one of the best understood signalling pathways in eukaryotes. Comparison of this system with pathways in other fungal species has generated surprises and insights. Cloning and targetted disruption of genes encoding components of the pheromone response pathway has allowed the attribution of specific functions to these signal transduction components. In this review we describe current knowledge of the Kluyveromyces lactis mating system, and compare it with the well-understood S. cerevisiae pathway, emphasizing the similarities and differences in the heterotrimeric G protein activity. This mating pathway is controlled positively by both the Galpha and the Gbeta subunits of the heterotrimeric G protein.


Subject(s)
Kluyveromyces/physiology , Pheromones/physiology , Signal Transduction , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/physiology , Kluyveromyces/genetics , Pheromones/genetics , Receptors, Pheromone/physiology , Response Elements , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL