Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cancer Genomics Proteomics ; 21(5): 448-463, 2024.
Article in English | MEDLINE | ID: mdl-39191493

ABSTRACT

BACKGROUND/AIM: The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer. MATERIALS AND METHODS: A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis. RESULTS: 20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg). CONCLUSION: Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Humans , Female , Male , Adult , Middle Aged , Genetic Testing/methods , Aged , High-Throughput Nucleotide Sequencing/methods , Young Adult , Neoplasms/genetics , Neoplasms/diagnosis , Laboratories, Clinical , Adolescent , Biomarkers, Tumor/genetics , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/diagnosis , Aged, 80 and over
2.
Diagnostics (Basel) ; 14(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39202314

ABSTRACT

Breast cancer (BC) is the most prominent tumor type among women, accounting for 32% of newly diagnosed cancer cases. BC risk factors include inherited germline pathogenic gene variants and family history of disease. However, the etiology of the disease remains occult in most cases. Therefore, in the absence of high-risk factors, a polygenic basis has been suggested to contribute to susceptibility. This information is utilized to calculate the Polygenic Risk Score (PRS) which is indicative of BC risk. This study aimed to evaluate retrospectively the clinical usefulness of PRS integration in BC risk calculation, utilizing a group of patients who have already been diagnosed with BC. The study comprised 105 breast cancer patients with hereditary genetic analysis results obtained by NGS. The selection included all testing results: high-risk gene-positive, intermediate/low-risk gene-positive, and negative. PRS results were obtained from an external laboratory (Allelica). PRS-based BC risk was computed both with and without considering additional risk factors, including gene status and family history. A significantly different PRS percentile distribution consistent with higher BC risk was observed in our cohort compared to the general population. Higher PRS-based BC risks were detected in younger patients and in those with FH of cancers. Among patients with a pathogenic germline variant detected, reduced PRS values were observed, while the BC risk was mainly determined by a monogenic etiology. Upon comprehensive analysis encompassing FH, gene status, and PRS, it was determined that 41.90% (44/105) of the patients demonstrated an elevated susceptibility for BC. Moreover, 63.63% of the patients with FH of BC and without an inherited pathogenic genetic variant detected showed increased BC risk by incorporating the PRS result. Our results indicate a major utility of PRS calculation in women with FH in the absence of a monogenic etiology detected by NGS. By combining high-risk strategies, such as inherited disease analysis, with low-risk screening strategies, such as FH and PRS, breast cancer risk stratification can be improved. This would facilitate the development of more effective preventive measures and optimize the allocation of healthcare resources.

3.
In Vivo ; 38(4): 1671-1676, 2024.
Article in English | MEDLINE | ID: mdl-38936911

ABSTRACT

BACKGROUND/AIM: Gliomas are highly heterogeneous malignancies originating from diverse cell types within the brain. Although their precise etiology is frequently unknown, risk factors, such as chemical exposure, radiation, and specific uncommon genetic disorders have been identified. Diagnosis typically entails imaging tests, such as magnetic resonance imaging and computed tomography, complemented by a biopsy for confirmation, which may be further validated through genetic testing. CASE REPORT: Next-generation sequencing technology revealed germline co-deletion deletion of cyclin-dependent kinase inhibitor 2 A and B genes (CDKN2A and CDKN2B) in a patient diagnosed with pleomorphic xanthoastrocytoma based on the tumor's molecular characteristics. Following this result, we performed focused genetic analysis with use of multiplex ligation-dependent probe amplification technology for the mother that revealed the same co-deletion. Moreover, due to the father's neuroendocrine pancreatic cancer, application of the NGS technology detected a pathogenic variant in the BRCA1-interacting helicase 1 (BRIP1) gene. Comprehensive multi-gene testing conducted within the familial context, marked by a varied spectrum of cancer type, revealed a constellation of genetic predispositions. CONCLUSION: This case study underscores the critical importance of molecular testing for tumor characterization and highlights the pivotal role of genetic testing in facilitating early intervention and screening for at-risk family members. Furthermore, the identification of germline co-deletions in cancer lays the foundation for the development of targeted therapeutic strategies aimed at restoring normal cellular regulation and improving patient management.


Subject(s)
Astrocytoma , Cyclin-Dependent Kinase Inhibitor p15 , Cyclin-Dependent Kinase Inhibitor p16 , Germ-Line Mutation , Humans , Cyclin-Dependent Kinase Inhibitor p16/genetics , Astrocytoma/genetics , Astrocytoma/pathology , Cyclin-Dependent Kinase Inhibitor p15/genetics , Germ-Line Mutation/genetics , High-Throughput Nucleotide Sequencing , Genetic Predisposition to Disease , Male , Female , Adult , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pedigree , Magnetic Resonance Imaging , Gene Deletion
4.
JCO Precis Oncol ; 8: e2300332, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38271656

ABSTRACT

PURPOSE: The pan-cancer presence of microsatellite instability (MSI)-positive tumors demonstrates its clinical utility as an agnostic biomarker for identifying immunotherapy-eligible patients. Additionally, MSI is a hallmark of Lynch syndrome (LS), the most prevalent cancer susceptibility syndrome among patients with colorectal and endometrial cancer. Therefore, MSI-high results should inform germline genetic testing for cancer-predisposing genes. However, in clinical practice, such analysis is frequently disregarded. METHODS: A next-generation sequencing (NGS)-based technique was used for MSI analysis in 4,553 patients with various tumor types. Upon request, somatic BRAF gene analysis was conducted. In addition, hereditary testing of cancer-associated genes was performed in MSI-high cases using a capture-based NGS protocol. MLH1 promoter methylation analysis was conducted retrospectively in patients with colorectal and endometrial cancer to further investigate the origin of MSI at the tumor level. RESULTS: The MSI positivity rate for the entire cohort was 5.27%. Endometrial, gastric, colorectal, urinary tract, and prostate cancers showed the highest proportion of MSI-high cases (15.69%, 8.54%, 7.40%, 4.55%, and 3.19%, respectively). A minority of 45 patients (22.73%) among the MSI-high cases underwent germline testing to determine whether the mismatch repair pathway deficiency was inherited. 24.44% of those who performed the genetic test carried a pathogenic variant in an LS-associated gene. Three MSI-high individuals had non-LS gene alterations, including BRCA1, BRCA2, and CDKN2A pathogenic variants, indicating the presence of non-LS-associated gene alterations among MSI-high patients. CONCLUSION: Although MSI analysis is routinely performed in clinical practice, as many as 77% of MSI-high patients do not undergo LS genetic testing, despite international guidelines strongly recommending it. BRAF and MLH1 methylation analysis could shed light on the somatic origin of MSI in 42.50% of the MSI-high patients; however, MLH1 analysis is barely ever requested in clinical practice.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Endometrial Neoplasms , Neoplastic Syndromes, Hereditary , Male , Female , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Retrospective Studies , Microsatellite Instability , Proto-Oncogene Proteins B-raf/genetics , Colorectal Neoplasms/genetics , Biomarkers , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics
5.
Cancers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067228

ABSTRACT

Our aim was to evaluate the concordance between the Myriad MyChoice and two alternative homologous recombination deficiency (HRD) assays (AmoyDx HRD Focus NGS Panel and OncoScan™) in patients with epithelial ovarian cancer (EOC). Tissue samples from 50 patients with newly diagnosed EOC and known Myriad MyChoice HRD status were included. DNA aliquots from tumor samples, previously evaluated with Myriad MyChoice and centrally reassessed, were distributed to laboratories to assess their HRD status using the two platforms, after being blinded for the Myriad MyChoice CDx HRD status. The primary endpoint was the concordance between Myriad MyChoice and each alternative assay. Tumor samples were evaluated with an AmoyDx® HRD Focus Panel (n = 50) and with OncoScan™ (n = 43). Both platforms provided results for all tumors. Analysis showed that correlation was high for the Myriad MyChoice GI score and AmoyDx® HRD Focus Panel (r = 0.79) or OncoScan™ (r = 0.87) (continuous variable). The overall percent agreement (OPA) between Myriad MyChoice GI status (categorical variable) and each alternative assay was 83.3% (68.6-93.3%) with AmoyDx and 77.5% (61.5-89.2%) with OncoScan™. The OPA in HRD status between Myriad MyChoice and AmoyDx was 88.6% (75.4-96.2). False-positive rates were 31.6% (6/19) for AmoyDx GI status and 31.9% (7/22) for OncoScan™, while false-negative rates were 0% (0/28, AmoyDx) and 11.1% (2/18, OncoScan™) compared with the Myriad MyChoice GI status. While substantial concordance between Myriad MyChoice and alternative assays was demonstrated, prospective validation of the analytical performance and clinical relevance of these assays is warranted.

6.
Cancers (Basel) ; 15(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958392

ABSTRACT

BACKGROUND: Hereditary cancer predisposition syndromes are responsible for approximately 5-10% of all diagnosed cancer cases. In order to identify individuals at risk in a cost-efficient manner, family members of individuals carrying pathogenic alterations are tested only for the specific variant that was identified in their carrier relative. The purpose of this study was to investigate the clinical use and implementation of cascade family testing (CFT) in families of breast cancer patients with pathogenic/likely pathogenic variants (PVs/LPVs) in cancer-related predisposition genes. METHODS: Germline sequencing was carried out with NGS technology using a 52-gene panel, and cascade testing was performed by Sanger sequencing or MLPA. RESULTS: In a cohort of 1785 breast cancer patients (families), 20.3% were found to have PVs/LPVs. Specifically, 52.2%, 25.1%, and 22.7% of patients had positive findings in high-, intermediate-, and low-penetrance breast cancer susceptibility genes, respectively. Although CFT was recommended to all families, only 117 families (32.3%) agreed to proceed with genetic testing. Among the first-degree relatives who underwent CFT, 70.3% were female, and 108 of 121 (89.3%) were cancer free. Additionally, 42.7%, 36.7%, and 20.6% were offspring, siblings, and parents of the subject, respectively. Our data suggest that CFT was mostly undertaken (104/117, 88.8%) in families with positive findings in high-risk genes. CONCLUSIONS: Cascade family testing can be a powerful tool for primary cancer prevention by identifying at-risk family members. It is of utmost importance to implement genetic counseling approaches leading to increased awareness and communication of genetic testing results.

7.
Oncol Lett ; 26(5): 480, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37809048

ABSTRACT

Tumors harboring homologous recombination deficiency (HRD) are considered optimal candidates for poly(ADP-ribose) polymerase 1 (PARP) inhibitor treatment. Such deficiency can be detected by analyzing breast cancer type (BRCA)1/2 gene mutations, as well as mutations in other genes of the homologous recombination pathway. The algorithmic measurement of the HRD effect by identifying genomic instability (GI) has been used as biomarker. As compared with the direct measurement of somatic gene alterations, this approach increases the number of patients who could benefit from PARP inhibitor treatment. In the present study, the performance of the Oncoscan CNV assay, accompanied by appropriate bioinformatic algorithms, was evaluated for its performance in GI calculation and was compared with that of a validated next-generation sequencing (NGS) test (myChoice HRD test). In addition, the clinical utility of the GI score (GIS) and BRCA1/2 tumor analysis were investigated in a cohort of 444 patients with ovarian cancer. For that reason, single nucleotide polymorphism (SNP) arrays and appropriate bioinformatics algorithms were used to calculate GIS in 29 patients with ovarian cancer with known GIS status using a validated NGS test. Furthermore, BRCA1/2 analysis results were compared between the aforementioned assay and the amplicon-based Oncomine™ BRCA Research Assay. BRCA1/2 analysis was performed in 444 patients with ovarian cancer, while GIS was calculated in 175 BRCA1/2-negative cases. The bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis (RediScore), and the OncoscanR pipeline exhibited a high overall agreement with the validated test (93.1%). In addition, the Oncomine NGS assay had a 100% agreement with the validated test. The BRCA1/2 mutation frequency was 26.5% in the examined patients with ovarian cancer. GIS was positive in 40% of the BRCA1/2-negative cases. The RediScore bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis is a viable and effective approach for HRD calculation in patients with ovarian cancer, offering a positive prediction for PARP inhibitor responsiveness in 55% of the patients.

8.
Diagnostics (Basel) ; 13(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37761329

ABSTRACT

Several tumor types have been efficiently treated with PARP inhibitors (PARPis), which are now approved for the treatment of ovarian, breast, prostate, and pancreatic cancers. The BRCA1/2 genes and mutations in many additional genes involved in the HR pathway may be responsible for the HRD phenomenon. The aim of the present study was to investigate the association between genomic loss of heterozygosity (gLOH) and alterations in 513 genes with targeted and immuno-oncology therapies in 406 samples using an NGS assay. In addition, the %gLOHs of 24 samples were calculated using the Affymetrix technology in order to compare the results obtained via the two methodologies. HR variations occurred in 20.93% of the malignancies, while BRCA1/2 gene alterations occurred in 5.17% of the malignancies. The %LOH was highly correlated with alterations in the BRCA1/2 genes, since 76.19% (16/21) of the BRCA1/2 positive tumors had a high %LOH value (p = 0.007). Moreover, the LOH status was highly correlated with the TP53 and KRAS statuses, but there was no association with the TMB value. Lin's concordance correlation coefficient for the 24 samples simultaneously examined via both assays was 0.87, indicating a nearly perfect agreement. In conclusion, the addition of gLOH analysis could assist in the detection of additional patients eligible for treatment with PARPis.

9.
Cancer Genomics Proteomics ; 20(5): 448-455, 2023.
Article in English | MEDLINE | ID: mdl-37643779

ABSTRACT

BACKGROUND/AIM: Germline copy number variation (CNV) is a type of genetic variant that predisposes significantly to inherited cancers. Today, next-generation sequencing (NGS) technologies have contributed to multi gene panel analysis in clinical practice. MATERIALS AND METHODS: A total of 2,163 patients were screened for cancer susceptibility, using a solution-based capture method. A panel of 52 genes was used for targeted NGS. The capture-based approach enables computational analysis of CNVs from NGS data. We studied the performance of the CNV module of the commercial software suite SeqPilot (JSI Medical Systems) and of the non-commercial tool panelcn.MOPS. Additionally, we tested the performance of digital multiplex ligation-dependent probe amplification (digitalMLPA). RESULTS: Pathogenic/likely pathogenic variants (P/LP) were identified in 464 samples (21.5%). CNV accounts for 10.8% (50/464) of pathogenic variants, referring to deletion/duplication of one or more exons of a gene. In patients with breast and ovarian cancer, CNVs accounted for 10.2% and 6.8% of pathogenic variants, respectively. In colorectal cancer patients, CNV accounted for 28.6% of pathogenic/likely pathogenic variants. CONCLUSION: In silico CNV detection tools provide a viable and cost-effective method to identify CNVs from NGS experiments. CNVs constitute a substantial percentage of P/LP variants, since they represent up to one of every ten P/LP findings identified by NGS multigene analysis; therefore, their evaluation is highly recommended to improve the diagnostic yield of hereditary cancer analysis.


Subject(s)
DNA Copy Number Variations , Ovarian Neoplasms , Female , Humans , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Exons , Genetic Testing
10.
In Vivo ; 37(4): 1432-1444, 2023.
Article in English | MEDLINE | ID: mdl-37369490

ABSTRACT

Alternative splicing (AS), a crucial cellular process, is a source of transcriptomic expansion and protein variability. Its contribution to cancer development and progression among a vast repertoire of human diseases, is highlighted lately and is under extensive investigation. In this review, the relative recent aspects of AS as a hallmark of cancer are described. In parallel, the importance of the identification of splicing-related variants through next-generation sequencing technologies is discussed. Cancer therapy and the management of patients and their families can highly benefit by the classification of these variants.


Subject(s)
Genetic Predisposition to Disease , Neoplasms , Humans , Alternative Splicing/genetics , Neoplasms/genetics , High-Throughput Nucleotide Sequencing
11.
J Neurol Sci ; 447: 120609, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36905813

ABSTRACT

Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.


Subject(s)
Nervous System Diseases , Neurology , Humans , Precision Medicine , Genetic Testing , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Nervous System Diseases/therapy , Databases, Factual , High-Throughput Nucleotide Sequencing
12.
Arch Oral Biol ; 150: 105689, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37001412

ABSTRACT

OBJECTIVE: Identify the disease-causing mutation in a patient with features of X-linked hypohidrotic ectodermal dysplasia, which is a genetic disorder characterized by hypodontia, hypohidrosis and hypotrichosis. It is caused by mutations in Ectodysplasin A gene, which encodes ectodysplasin A, a member of the tumor necrosis factor superfamily. DESIGN: Genetic analysis, was performed using chromosomal microarray analysis, whole exome sequencing and multiplex ligation-dependent probe amplification analysis in a 4-year-old boy with hypohidrotic ectodermal dysplasia features. Moreover, the boy's parents were tested for clinically significant findings identified in order to elucidate the pattern of inheritance of the finding detected in the proband. RESULTS: A novel deletion of entire exon 4 in Ectodysplasin A gene identified in the 4-year-old patient. This deletion was found in heterozygous state in the mother of the proband and was not detected in his father. RNA analysis revealed an in-frame deletion r.527_706del, p.(176_236del) in exon 4 of the Ectodysplasin A gene. CONCLUSION: We identified a novel gross deletion in the Ectodysplasin A gene in a male patient with X-linked hypohidrotic ectodermal dysplasia. Clinical and molecular genetic analysis are crucial to set an accurate diagnosis in patients with hypohidrotic ectodermal dysplasia. These results highlight the importance of the collagen domain of Ectodysplasin A, encoded by exon 4, for its function in vivo.


Subject(s)
Ectodermal Dysplasia 1, Anhidrotic , Humans , Male , Child, Preschool , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/genetics , Pedigree , Mutation , Exons/genetics
13.
Cancers (Basel) ; 16(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38201431

ABSTRACT

Despite ongoing oncological advances, pancreatic ductal adenocarcinoma (PDAC) continues to have an extremely poor prognosis with limited targeted and immunotherapeutic options. Its genomic background has not been fully characterized yet in large-scale populations all over the world. Methods: Replicating a recent study from China, we collected tissue samples from consecutive Greek patients with pathologically-confirmed metastatic/unresectable PDAC and retrospectively investigated their genomic landscape using next generation sequencing (NGS). Findings: From a cohort of 409 patients, NGS analysis was successfully achieved in 400 cases (56.50% males, median age: 61.8 years). Consistent with a previous study, KRAS was the most frequently mutated gene in 81.50% of tested samples, followed by TP53 (50.75%), CDKN2 (8%), and SMAD4 (7.50%). BRCA1/2 variants with on-label indications were detected in 2%, and 87.50% carried a variant associated with off-label treatment (KRAS, ERBB2, STK11, or HRR-genes), while 3.5% of the alterations had unknown/preliminary-studied actionability (TP53/CDKN2A). Most of HRR-alterations were in intermediate- and low-risk genes (CHEK2, RAD50, RAD51, ATM, FANCA, FANCL, FANCC, BAP1), with controversial actionability: 8% harbored a somatic non-BRCA1/2 alteration, 6 cases had a high-risk alteration (PALB2, RAD51C), and one co-presented a PALB2/BRCA2 alteration. Elevated LOH was associated with HRR-mutated status and TP53 mutations while lowered LOH was associated with KRAS alterations. Including TMB/MSI data, the potential benefit from an NGS-oriented treatment was increased from 1.91% to 13.74% (high-MSI: 0.3%, TMB > 10 muts/MB: 12.78%). TMB was slightly increased in females (4.75 vs. 4.46 muts/MB) and in individuals with age > 60 (4.77 vs. 4.40 muts/MB). About 28.41% showed PD-L1 > 1% either in tumor or immune cells, 15.75% expressed PD-L1 ≥ 10%, and only 1.18% had PD-L1 ≥ 50%. This is the largest depiction of real-world genomic characteristics of European patients with PDAC, which offers some useful clinical and research insights.

14.
Anticancer Res ; 42(12): 5795-5801, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36456130

ABSTRACT

BACKGROUND/AIM: Male breast cancer (MBC) is a very rare disorder affecting approximately 1 in 833 men. Genetic predisposition is one of the most important risk factors of MBC with BRCA2 being the most commonly mutated gene in males diagnosed with breast cancer. However, a large part of MBC heritability is still unexplained. This study sought to add to the data already available on the genetics of MBC. MATERIALS AND METHODS: Our study initially involved comprehensive analysis of BRCA1 and BRCA2, followed by analysis of 43 genes implicated in cancer predisposition in a series of 100 Greek patients diagnosed with MBC between 1995-2015. RESULTS: Pathogenic variants were identified in 13 patients, with BRCA2 being the most commonly affected gene, followed by BRCA1, RAD50, RAD51B, and MSH3. CONCLUSION: In agreement with previous reports, BRCA2 is the most important genetic factor of MBC predisposition, while the remaining known cancer predisposition genes are each very rarely involved, rendering conclusions as to their cumulative effect difficult to draw.


Subject(s)
Breast Neoplasms, Male , Humans , Male , Breast Neoplasms, Male/genetics , Genetic Predisposition to Disease , Genotype , Rare Diseases , Risk Factors
15.
Oncol Lett ; 23(4): 118, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35261632

ABSTRACT

Next-generation sequencing (NGS) technology is used to evaluate hereditary cancer risks of patients worldwide; however, information concerning the germline multigene mutational spectrum among patients with breast cancer (BC) with consanguineous marriage (CM) is limited. Therefore, this prospective study aimed to determine the molecular characteristics of patients with BC who were tested with multigene hereditary cancer predisposition NGS panel and to show the effect of CM on cancer-related genes. Patients with BC with or without CM and family history (FH) of BC treated in our breast center were selected according to The National Comprehensive Cancer Network (NCCN) criteria for hereditary BC. In these patients, the analysis of a panel of 33 genes involved in hereditary cancer predisposition was performed after genetic counseling by using NGS. The pathogenic variant (PV) and the variant of uncertain significance (VUS) were found to be 15.8 and 47.4%, respectively. PVs were identified in 10/33 genes in 34 patients; 38.2% in BRCA1/2 genes; 6, 24, and 14% in other high, moderate and low-risk genes, respectively. The CM rate was 17.7% among the 215 patients with BC. The PV rate was 13.2% in patients with CM and 16.4% in patients without CM (P=0.80). When PV and VUS were evaluated together, the PV+VUS ratio was significantly higher in patients with CM and FH of BC than patients without CM and FH of BC (88.2 vs. 63.3%, P=0.045). Analysis of multigene panel provided 9.76% additional PVs in moderate/low-risk genes. The PV rate was similar in patients with BC with or without CM. A high PV+VUS ratio in patients with CM and FH of BC suggests that genes whose importance are unknown are likely to be pathogenic genes later.

16.
Cancer Genomics Proteomics ; 19(1): 60-78, 2022.
Article in English | MEDLINE | ID: mdl-34949660

ABSTRACT

BACKGROUND/AIM: The use of multi-gene panels for germline testing in breast cancer enables the estimation of cancer risk and guides risk-reducing management options. The aim of this study was to present data that demonstrate the different levels of actionability for multi-gene panels used in genetic testing of breast cancer patients and their family members. MATERIALS AND METHODS: We performed an analysis in our clinical database to identify breast cancer patients undergoing genetic testing. We reviewed positive results in respect of risk estimation and management, cascade family testing, secondary findings and information for treatment decision-making. RESULTS: A total of 415 positive test reports were identified with 57.1%, 18.1%, 10.8% and 13.5% of individuals having pathogenic/likely pathogenic variants in high, moderate, low and with insufficient evidence for breast cancer risk genes, respectively. Six point seven percent of individuals were double heterozygotes. CONCLUSION: Germline findings in 92% of individuals are linked to evidence-based treatment information and risk estimates for predisposition to breast and/or other cancer types. The use of germline findings for treatment decision making expands the indication of genetic testing to include individuals that could benefit from targeted treatments.


Subject(s)
Breast Neoplasms, Male/epidemiology , Breast Neoplasms/epidemiology , DNA Mutational Analysis/standards , Genetic Testing/standards , Germ-Line Mutation , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Breast Neoplasms, Male/drug therapy , Breast Neoplasms, Male/genetics , Breast Neoplasms, Male/prevention & control , Clinical Decision-Making/methods , Family , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Middle Aged , Molecular Targeted Therapy/methods , Precision Medicine/methods , Precision Medicine/standards , Retrospective Studies , Risk Assessment/methods , Risk Assessment/standards , Young Adult
17.
BMC Med Genomics ; 14(1): 105, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33853586

ABSTRACT

BACKGROUND: Tumor molecular profile analysis by Next Generation Sequencing technology is currently widely applied in clinical practice and has enabled the detection of predictive biomarkers of response to targeted treatment. In parallel with targeted therapies, immunotherapies are also evolving, revolutionizing cancer therapy, with Programmed Death-ligand 1 (PD-L1), Microsatellite instability (MSI), and Tumor Mutational Burden (TMB) analysis being the biomarkers employed most commonly. METHODS: In the present study, tumor molecular profile analysis was performed using a 161 gene NGS panel, containing the majority of clinically significant genes for cancer treatment selection. A variety of tumor types have been analyzed, including aggressive and hard to treat cancers such as pancreatic cancer. Besides, the clinical utility of immunotherapy biomarkers (TMB, MSI, PD-L1), was also studied. RESULTS: Molecular profile analysis was conducted in 610 cancer patients, while in 393 of them a at least one biomarker for immunotherapy response was requested. An actionable alteration was detected in 77.87% of the patients. 54.75% of them received information related to on-label or off-label treatment (Tiers 1A.1, 1A.2, 2B, and 2C.1) and 21.31% received a variant that could be used for clinical trial inclusion. The addition to immunotherapy biomarker to targeted biomarkers' analysis in 191 cases increased the number of patients with an on-label treatment recommendation by 22.92%, while an option for on-label or off-label treatment was provided in 71.35% of the cases. CONCLUSIONS: Tumor molecular profile analysis using NGS is a first-tier method for a variety of tumor types and provides important information for decision making in the treatment of cancer patients. Importantly, simultaneous analysis for targeted therapy and immunotherapy biomarkers could lead to better tumor characterization and offer actionable information in the majority of patients. Furthermore, our data suggest that one in two patients may be eligible for on-label ICI treatment based on biomarker analysis. However, appropriate interpretation of results from such analysis is essential for implementation in clinical practice and accurate refinement of treatment strategy.


Subject(s)
Immunotherapy , Microsatellite Instability , Adult , B7-H1 Antigen , Biomarkers, Tumor , Humans , Male
18.
Cancer Genomics Proteomics ; 18(3): 285-294, 2021.
Article in English | MEDLINE | ID: mdl-33893081

ABSTRACT

BACKGROUND: Classification of splicing variants (SVs) in genes associated with hereditary cancer is often challenging. The aim of this study was to investigate the occurrence of SVs in hereditary cancer genes and the clinical utility of RNA analysis. MATERIAL AND METHODS: 1518 individuals were tested for cancer predisposition, using a Next Generation Sequencing (NGS) panel of 36 genes. Splicing variant analysis was performed using RT-PCR and Sanger Sequencing. RESULTS: In total, 34 different SVs were identified, 53% of which were classified as pathogenic or likely pathogenic. The remaining 16 variants were initially classified as Variant of Uncertain Significance (VUS). RNA analysis was performed for 3 novel variants. CONCLUSION: The RNA analysis assisted in the reclassification of 20% of splicing variants from VUS to pathogenic. RNA analysis is essential in the case of uncharacterized splicing variants, for proper classification and personalized management of these patients.


Subject(s)
Neoplasms/genetics , RNA Splicing/genetics , RNA/genetics , Genetic Predisposition to Disease , Humans
19.
Hellenic J Cardiol ; 62(4): 278-284, 2021.
Article in English | MEDLINE | ID: mdl-32092393

ABSTRACT

OBJECTIVE: Several microRNA (miRNA) polymorphisms have been associated with susceptibility to specific health disorders, including cardiovascular diseases. The aim of the present study was to investigate whether four well-studied miRNA polymorphisms in non-Caucasian populations, namely miR146a G>C (rs2910164), miR149 C>T (rs2292832), miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444), contribute to the risk for the development of premature Coronary Artery Disease (CAD) in the Greek population. METHODS: We used a case-control study to examine these associations in 400 individuals: 200 CAD patients [including a subgroup of myocardial infraction (MI) patients] and 200 healthy controls, all of Greek origin. MiRNA polymorphisms were genotyped using three different assays: Polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP), High resolution Melting (HRM) and Sanger sequencing. RESULTS: Two of these polymorphisms, miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444) were found to be strongly associated with increased risk for CAD (p=0.0388 and p=0.0013, respectively) and for MI (p=0.0281 and p=0.0273, respectively). Furthermore, miR146C-miR149C-miR196T-miR499G allele combination appeared to be significantly related to CAD (p=0.0185) and MI (p=0.0337) prevalence. CONCLUSIONS: Our results suggest that at least two of the studied polymorphisms, miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444), as well as the miR146C-miR149C-miR196T-miR499G allele combination could represent useful biomarkers of CAD and/or MI susceptibility in the Greek population. These special genetic characteristics, in combination with environmental factors and personal habits, might contribute to CAD and/or MI prevalence.


Subject(s)
Coronary Artery Disease , MicroRNAs , Case-Control Studies , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Genetic Predisposition to Disease , Genotype , Humans , MicroRNAs/genetics , Polymorphism, Single Nucleotide
20.
Mol Genet Genomic Med ; 8(10): e1242, 2020 10.
Article in English | MEDLINE | ID: mdl-32853479

ABSTRACT

BACKGROUND: Carriers with pathogenic variants in MSH2 have increased risk to develop colorectal, endometrium, ovarian, and other types of cancer. The PALB2 is associated with breast, ovarian, pancreatic, and prostate cancer. We describe the case of a 42-year-old female diagnosed with endometrial cancer at the age of 42 years with a strong family history of colorectal cancer, which was referred to our private diagnostic laboratory for genetic testing. METHODS: In this study, we performed next-generation sequencing (NGS) using an amplicon based 26 genes panel. The presence of multi-exonic copy number variations (CNVs) was investigated by computational analysis and Multiplex Ligation-dependent Probe Amplification (MLPA). RESULTS: A gross deletion of the genomic region encompassing exons 11-16 of the MSH2 and the loss-of-function variant c.757_758delCT, p.(Leu253Ilefs*3) in the PALB2 were identified in the proband. CONCLUSIONS: Multigene analysis using NGS technology allows the identification of pathogenic variants in genes that would normally not be tested based on the patient diagnosis. In our case these results explained not only the personal and/or family history of cancer but also allowed the surveillance for prevention of other cancer types. Moreover, the detection of large genomic rearrangements should be routinely included in hereditary cancer testing.


Subject(s)
Endometrial Neoplasms/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Loss of Function Mutation , MutS Homolog 2 Protein/genetics , Adult , Endometrial Neoplasms/pathology , Female , Germ-Line Mutation , Heterozygote , Humans
SELECTION OF CITATIONS
SEARCH DETAIL