Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2941, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221190

ABSTRACT

The motion of quantized vortices is responsible for many intriguing phenomena in diverse quantum-fluid systems. Having a theoretical model to reliably predict the vortex motion therefore promises a broad significance. But a grand challenge in developing such a model is to evaluate the dissipative force caused by thermal quasiparticles in the quantum fluids scattering off the vortex cores. Various models have been proposed, but it remains unclear which model describes reality due to the lack of comparative experimental data. Here we report a visualization study of quantized vortex rings propagating in superfluid helium. By examining how the vortex rings spontaneously decay, we provide decisive data to identify the model that best reproduces observations. This study helps to eliminate ambiguities about the dissipative force acting on vortices, which could have implications for research in various quantum-fluid systems that also involve similar forces, such as superfluid neutron stars and gravity-mapped holographic superfluids.

2.
Phys Rev Lett ; 129(2): 025301, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35867430

ABSTRACT

In classical viscous fluids, turbulent eddies are known to be responsible for the rapid spreading of embedded particles. However, in inviscid quantum fluids where the turbulence is induced by a chaotic tangle of quantized vortices, dispersion of the particles can be achieved via a nonclassical mechanism, i.e., their binding to the evolving vortices. However, knowledge on how the vortices diffuse and spread in quantum-fluid turbulence is very limited, especially for the so-called ultraquantum turbulence (UQT) generated by a random tangle of vortices. Here we report a systematic numerical study of the apparent diffusion of vortices in UQT in superfluid helium-4 using the full Biot-Savart simulation. We reveal that the vortices in the superfluid exhibit a universal anomalous diffusion (superdiffusion) at small times, which transits to normal diffusion at large times. This behavior is found to be the result of a generic scaling property of the vortex velocity. Our simulation at finite temperatures also nicely reproduces recent experimental observations. The knowledge obtained from this study may form the base for understanding turbulent transport and universal vortex dynamics in various quantum fluids.

3.
Sci Adv ; 8(18): eabn1143, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35507658

ABSTRACT

Impurity injection into superfluid helium is a simple and appealing method with diverse applications, including high-precision spectroscopy, quantum computing with surface electrons, nano/micromaterial synthesis, and flow visualization. Quantized vortices play a major role in the interaction between superfluid helium and light impurities. However, the basic principle governing this interaction is still unclear for dense (high mass density and refractive index) materials, such as semiconductor and metal impurities. Here, we provide experimental evidence of the dense silicon nanoparticle attraction to the quantized vortex cores. We prepared the silicon nanoparticles via in situ laser ablation. Following laser ablation, we observed that the silicon nanoparticles formed curved filament-like structures, indicative of quantized vortex cores. We also observed that two accidentally intersecting quantized vortices exchanged their parts, a phenomenon called quantized vortex reconnection. This behavior closely matches the dynamical scaling of reconnections. Our results provide a previously unexplored method for visualizing and studying impurity-quantized vortex interactions.

4.
Phys Rev Lett ; 124(15): 155301, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357033

ABSTRACT

We investigate the thermal counterflow of the superfluid ^{4}He by numerically simulating three-dimensional fully coupled dynamics of the two fluids, namely quantized vortices and a normal fluid. We analyze the velocity fluctuations of the laminar normal fluid arising from the mutual friction with the quantum turbulence of the superfluid component. The streamwise fluctuations exhibit higher intensity and longer-range autocorrelation, as compared to transverse ones. The anomalous fluctuations are consistent with visualization experiments [Mastracci et al., Phys. Rev. Fluids 4, 083305 (2019)PLFHBR2469-990X10.1103/PhysRevFluids.4.083305], and our results confirm their analysis with simple models on the anisotropic fluctuations. This success validates the model of the fully coupled dynamics and paves the way for solving some outstanding problems in this two-fluid system.

5.
Phys Rev Lett ; 124(10): 105302, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216394

ABSTRACT

When rotating classical fluid drops merge together, angular momentum can be advected from one to another due to the viscous shear flow at the drop interface. It remains elusive what the corresponding mechanism is in inviscid quantum fluids such as Bose-Einstein condensates (BECs). Here we report our theoretical study of an initially static BEC merging with a rotating BEC in three-dimensional space along the rotational axis. We show that a solitonlike sheet, resembling a corkscrew, spontaneously emerges at the interface. Rapid angular-momentum transfer at a constant rate universally proportional to the initial angular-momentum density is observed. Strikingly, this transfer does not necessarily involve fluid advection or drifting of the quantized vortices. We reveal that the corkscrew structure can exert a torque that directly creates angular momentum in the static BEC and annihilates angular momentum in the rotating BEC. Uncovering this intriguing angular-momentum transport mechanism may benefit our understanding of various coherent matter-wave systems, spanning from atomtronics on chips to dark matter BECs at cosmic scales.

6.
Science ; 366(6463): 382-385, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31582522

ABSTRACT

Scale-invariant fluxes are the defining property of turbulent cascades, but their direct measurement is a challenging experimental problem. Here we perform such a measurement for a direct energy cascade in a turbulent quantum gas. Using a time-periodic force, we inject energy at a large length scale and generate a cascade in a uniformly trapped three-dimensional Bose gas. The adjustable trap depth provides a high-momentum cutoff k D, which realizes a synthetic dissipation scale. This gives us direct access to the particle flux across a momentum shell of radius k D, and the tunability of k D allows for a clear demonstration of the zeroth law of turbulence. Moreover, our time-resolved measurements give unique access to the pre-steady-state dynamics, when the cascade front propagates in momentum space.

7.
Phys Rev Lett ; 120(15): 155301, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29756900

ABSTRACT

The coupled dynamics of the two-fluid model of superfluid ^{4}He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

8.
Phys Rev Lett ; 109(24): 245301, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368339

ABSTRACT

We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

9.
Phys Rev Lett ; 105(20): 205301, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21231243

ABSTRACT

We theoretically study the development of quantum turbulence from two counter-propagating superfluids of miscible Bose-Einstein condensates by numerically solving the coupled Gross-Pitaevskii equations. When the relative velocity exceeds a critical value, the countersuperflow becomes unstable and quantized vortices are nucleated, which leads to isotropic quantum turbulence consisting of two superflows. It is shown that the binary turbulence can be realized experimentally in a trapped system.

10.
J Phys Condens Matter ; 21(16): 164207, 2009 Apr 22.
Article in English | MEDLINE | ID: mdl-21825387

ABSTRACT

This paper reviews recent developments in the physics of quantum turbulence (QT). QT was discovered in superfluid (4)He in the 1950s, while the research has taken a new direction since the middle of the 1990s. QT is comprised of quantized vortices that are definite topological defects and expected to give a prototype of turbulence much simpler than usual classical turbulence. We give a general introduction and brief review of classical turbulence followed by a description of the dynamics of quantized vortices. After mentioning the modern research trends in QT, we discuss the energy spectra, the energy cascade and the possible dissipation mechanism of QT at very low temperatures. The last part is devoted to QT in atomic Bose-Einstein condensates.

11.
Phys Rev Lett ; 101(22): 220401, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19113463

ABSTRACT

We theoretically propose and numerically realize spin echo in a spinor Bose-Einstein condensate (BEC). We investigate the influence on the spin echo of phase separation of the condensate. The equation of motion of the spin density exhibits two relaxation times. We use two methods to separate the relaxation times and hence demonstrate a technique to reveal magnetic dipole-dipole interactions in spinor BECs.

12.
Phys Rev Lett ; 97(14): 145301, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155265

ABSTRACT

The microscopic mechanism of thermal dissipation in quantum turbulence is numerically studied by solving the coupled system involving the Gross-Pitaevskii equation and the Bogoliubov-de Gennes equation. At low temperatures, the obtained dissipation does not work at scales greater than the vortex core size. However, as the temperature increases, dissipation works at large scales and it affects the vortex dynamics. We successfully obtain the mutual friction coefficients of the vortex in dilute Bose-Einstein condensates dynamics as functions of temperature.

13.
Phys Rev Lett ; 96(20): 200405, 2006 May 26.
Article in English | MEDLINE | ID: mdl-16803159

ABSTRACT

By minimizing the coupled mean-field energy functionals, we investigate the ground-state properties of a rotating atomic boson-fermion mixture in a two-dimensional parabolic trap. At high angular frequencies in the mean-field lowest-Landau-level regime, quantized vortices enter the bosonic condensate, and a finite number of degenerate fermions form the maximum-density-droplet state. As the boson-fermion coupling constant increases, the maximum density droplet develops into a lower-density state associated with the phase separation, revealing characteristics of a Landau-level structure.

14.
Phys Rev Lett ; 97(24): 240404, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17280259

ABSTRACT

We present simulation results of the vortex dynamics in a trapped Bose-Einstein condensate in the presence of a rotating optical lattice. Changing the potential amplitude and the relative rotation frequency between the condensate and the optical lattice, we find a rich variety of dynamical phases of vortices. The onset of these different phases is described by the force balance of a driving force, a pinning force, and vortex-vortex interactions. In particular, when the optical lattice rotates faster than the condensate, an incommensurate effect leads to a vortex-liquid phase supported by the competition between the driving force and the dissipation.

15.
Phys Rev Lett ; 94(6): 065302, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15783741

ABSTRACT

The energy spectrum of superfluid turbulence is studied numerically by solving the Gross-Pitaevskii equation. We introduce the dissipation term which works only in the scale smaller than the healing length to remove short wavelength excitations which may hinder the cascade process of quantized vortices in the inertial range. The obtained energy spectrum is consistent with the Kolmogorov law.

16.
Phys Rev Lett ; 93(10): 100402, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15447389

ABSTRACT

The dynamics of multiple domain formation caused by the modulation instability of two-component Bose-Einstein condensates in an axially symmetric trap are studied by numerically integrating the coupled Gross-Pitaevskii equations. The modulation instability induced by the intercomponent mean-field coupling occurs in the out-of-phase fluctuation of the wave function and leads to the formation of multiple domains that alternate from one domain to another, where the phase of one component jumps across the density dips where the domains of the other exist. This behavior is analogous to a soliton train, which explains the origin of the long lifetime of the spin domains observed by Miesner et al. [Phys. Rev. Lett. 82, 2228 (1999)]].

17.
Phys Rev Lett ; 93(25): 250406, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15697880

ABSTRACT

A vortex molecule is predicted in rotating two-component Bose-Einstein condensates whose internal hyperfine states are coupled coherently by an external field. A vortex in one component and one in the other are connected by a domain wall of the relative phase, constituting a "vortex molecule," which features a nonaxisymmetric (pseudo)spin texture with a pair of merons. The binding mechanism of the vortex molecule is discussed based on a generalized nonlinear sigma model and a variational ansatz. The anisotropy of vortex molecules is caused by the difference in the scattering lengths, yielding a distorted vortex-molecule lattice in fast rotating condensates.

18.
Phys Rev Lett ; 91(15): 150406, 2003 Oct 10.
Article in English | MEDLINE | ID: mdl-14611456

ABSTRACT

We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent-coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattices, and eventually develop interwoven "serpentine" vortex sheets with each component made up of chains of singly quantized vortices.

19.
Phys Rev Lett ; 91(13): 135301, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14525312

ABSTRACT

A study by computer simulation is reported of the behavior of a quantized vortex line at a very low temperature when there is continuous excitation of low-frequency Kelvin waves. There is no dissipation except by phonon radiation at a very high frequency. It is shown that nonlinear coupling leads to a net flow of energy to higher wave numbers and to the development of a simple spectrum of Kelvin waves that is insensitive to the strength and frequency of the exciting drive. The results are likely to be relevant to the decay of turbulence in superfluid 4He at very low temperatures.

20.
Phys Rev Lett ; 90(20): 205301, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12785904

ABSTRACT

Almost all studies of vortex states in helium II have been concerned with either ordered vortex arrays or disordered vortex tangles. This work numerically studies what happens in the presence of both rotation (which induces order) and thermal counterflow (which induces disorder). We find a new statistically steady state in which the vortex tangle is polarized along the rotational axis. Our results are used to interpret an instability that was discovered experimentally by Swanson et al. [Phys. Rev. Lett. 50, 190 (1983)]] and the vortex state beyond the instability that has been unexplained until now.

SELECTION OF CITATIONS
SEARCH DETAIL
...