Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
1.
Heliyon ; 10(16): e36153, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224264

ABSTRACT

Blastomyces dermatitidis is a thermally dimorphic fungus that can cause serious and sometimes fatal infections, including blastomycosis. After spore inhalation, a pulmonary infection develops, which can be asymptomatic and have lethal effects, such as acute respiratory distress syndrome. Its most common extra-pulmonary sites are the central nervous system, bones, skin, and genito-urinary systems. Currently, no vaccine has been approved by the FDA to prevent this infection. In the study, a peptide-based vaccine was developed against blastomycosis by using subtractive proteomics and reverse vaccinology approaches. It focuses on mining the whole genome of B. dermatitidis, identifying potential therapeutic targets, and pinpointing potential epitopes for both B- and T-cells that are immunogenic, non-allergenic, non-toxic, and highly antigenic. Multi-epitope constructs were generated by incorporating appropriate linker sequences. A linker (EAAAK) was also added to incorporate an adjuvant sequence to increase immunological potential. The addition of adjuvants and linkers ultimately resulted in the formation of a vaccine construct in which the number of amino acids was 243 and the molecular weight was 26.18 kDa. The designed antigenic and non-allergenic vaccine constructs showed suitable physicochemical properties. The vaccine's structures were predicted, and further analysis verified their interactions with the human TLR-4 receptor through protein-protein docking. Additionally, MD simulation showed a potent interaction between prioritized vaccine-receptor complexes. Immune simulation predicted that the final vaccine injections resulted in significant immune responses for the T- and B-cell immune responses. Moreover, in silico cloning ensured a high expression possibility of the lead vaccine in the E. coli (K12) vector. This study offers an initiative for the development of effective vaccines against B. dermatitidis; however, it is necessary to validate the designed vaccine's immunogenicity experimentally.

2.
Food Chem X ; 24: 101791, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39290750

ABSTRACT

Peanuts are highly valued for their abundance of essential nutrients and health-promoting phenolic compounds. Peanut press cake, an inexpensive and underutilized agro-industrial by-product of oil production, is typically discarded or used as animal feed. This study investigated the influence of thermal processing and varietal disparities on the nutritional composition, phenolic content, and biological properties of peanut flour and oilcake flour, aiming to enhance their value as food ingredients. The findings showed that roasting significantly increased the oil (9.98 ± 0.11-44.13 ± 0.10 %), ash (1.28 ± 0.01-5.45 ± 0.05 %), carbohydrate contents (0.90 ± 0.01-28.09 ± 0.28 %), and energy value (406.69 ± 0.09-609.13 ± 1.08 kcal/100 g), along with the total polyphenol content (28.64 ± 0.19-62.79 ± 1.18 mg GAE/g), total flavonoid content (4.20 ± 0.07-18.35 ± 0.06 mg QE/g) and antioxidant activity in both peanut flour and its oilcake. Conversely, it led to a reduction in the moisture (1.48 ± 0.09-6.25 ± 0.15 %) and protein content (49.50 ± 0.05-54.24 ± 0.01 %). Notable variations were found between the two peanut varieties in terms of these nutritional parameters. Elemental analysis unveiled significant discrepancies among peanut varieties and with roasting, with potassium (12,237.56 ± 101.36-14,513.34 ± 168.62 mg/kg) emerging as the predominant macro-element followed by phosphorus (6156.86 ± 36.19-8815.22 ± 130.70 mg/kg) and magnesium (3037.92 ± 13.87-4096.44 ± 8.54 mg/kg), while zinc (53.98 ± 0.61-81.77 ± 0.44 mg/kg) predominated among the microelements. Moreover, peanut and oilcake flours demonstrated antibacterial activity against several bacteria. It can be inferred that roasted peanut and oilcake flours offer substantial nutritional value, making them promising candidates for addressing protein-energy malnutrition and serving as valuable ingredients in developing new food products.

3.
Food Chem X ; 24: 101785, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39290756

ABSTRACT

This study examines the effect of UV irradiation on the oxidation stability of Linum usitatissimum oil, presenting possible changes in the phytochemical profile due to photo-oxidation. GC-MS analysis of the oils identified 11 fatty acid compounds with a high percentage of unsaturated fatty acids, the most important of which is α-linolenic acid (ALA), known as omega-3 (48.88 %), also significant profiles of phytosterol and tcocopherol isomers rich in ß-Sitosterol and γ-tocopherols respectively. As well as physicochemical properties such as free fatty acids (FFA %), peroxide value (PV) and iodine value (IV), and nutritional indexes that determine the significant changes observed during the oxidation process, the most important of which is the progressive increase in acidity, peroxide, conjugated dienes and trienes and degrees of unsaturation over 8 h of UV exposure. High levels of carotenoids and phenolic compounds (TPC) protect and enhance oil quality in the face of irradiation, so a significantly small difference is observed between irradiated and non-irradiated oil during photo-oxidation.

4.
Comput Biol Med ; 182: 109099, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265475

ABSTRACT

Antibiotics have been a vital component in the fight against microbial diseases for over 75 years, saving countless lives. However, the global rise of multi-drug-resistance (MDR) bacterial infections is pushing us closer to a post-antibiotic era where common infections may once again become lethal. To combat MDR Acinetobacter baumannii, we investigated chiral phthalimides and used molecular docking to identify potential targets. Outer membrane protein A (OmpA) is crucial for A. baumannii resistant to antibiotics, making it a pathogen of great concern due to its high mortality rate and limited treatment options. In this study, we evaluated three distinct compounds against the OmpA protein: FIA (2-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid), FIC (2-(1,3-dioxoindolin-2yl)-4-(methylthio) butanoic acid), and FII (3-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid). Molecular docking results showed that these three compounds exhibited strong interactions with the OmpA protein. Molecular dynamics (MD) simulation analysis further confirmed the stability and binding efficacy of these compounds with OmpA. Their antimicrobial activities were assessed using the agar well diffusion method, revealing that FIA had an optimal zone of inhibition of 24 mm. Additionally, the minimum inhibitory concentrations (MIC) of these compounds were determined, demonstrating their bactericidal properties against A. baumannii, with MICs of 11 µg/µL for FIA, 46 µg/µL for FIC, and 375 µg/µL for FII. In vitro cytotoxicity data indicated that none of the three compounds were hemolytic when exposed to human red blood cells. This finding is particularly significant as it highlights the superior efficacy of FIA against A. baumannii compared to the other compounds. With thorough pharmacokinetic validations, these chiral phthalimides are promising alternative therapeutic options for treating infections caused by A. baumannii, offering new hope in the face of rising antibiotic resistance.

5.
Chem Biodivers ; : e202401654, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266453

ABSTRACT

This study aims to elucidate the phytochemical diversity and biological activities of J. thurifera essential oil (JTEO) through a comparative analysis of samples from two distinct regions: Tensift-Al Haouz and Azilal, using both in vitro and in silico methods. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed 21 components in the Tensift-Al Haouz JTEO (99.99% of the oil) and 23 components in the Azilal JTEO (99.58% of the oil), with oxygenated monoterpenes being the predominant compounds in both. The biological activities were assessed in vitro. Antioxidant properties, evaluated using DPPH, FRAP, and ABTS assays, showed significant activity in both oils. Antibacterial activity was tested against two strains of Gram-positive and two strains of Gram-negative bacteria, with both oils demonstrating notable bacterial growth inhibition. Enzymatic assays assessed the antidiabetic (α-amylase and α-glucosidase), dermo-protective (tyrosinase and elastase), and neuroprotective (AChE and BChE) activities. Both oils displayed substantial inhibitory effects across all tested activities, with variations attributed to their distinct chemical compositions. In silico analyses of six target enzymes confirmed significant binding affinities of the major compounds. Notably, 2,2'-Thiobis(6-tert-butyl-p-cresol) exhibited strong binding affinities with AChE, BChE, α-amylase, α-glucosidase, tyrosinase, and elastase, with binding energies ranging from -10.0 to -6.2 kcal/mol.

6.
Chem Biodivers ; : e202401262, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255507

ABSTRACT

This study investigates for the first time the effects of UV light exposure on the chemical composition of artisanal and cold-pressed culinary and cosmetic argan oils, as well as their quality and biological activities. We ascertained the oxidative stability of both types of oil through measurements of the peroxide value, acidity, UV-spectrophotometric indexes (E232 and E270), and iodine value. Over the course of eight hours at room temperature, the impact of UV light on the breakdown of tocopherols, polyphenols, chlorophylls, and carotenoid pigments was examined. The findings showed that during photo-oxidation, acidity, peroxide value, and particular extinction coefficients (E232 and E270) gradually increased. On the other hand, a decline in the content of polyphenols, tocopherols, carotenoid, and chlorophyll was noted. Interestingly, iodine levels failed to improve. Although after an eight-hour degradation, the physicochemical profile of argan oils remained exceptional. DPPH• (1,1-Diphenyl-2-picrylhydrazyl) antioxidant activity tests showed a gradual decrease in radical inhibition over time, which was attributed to lower levels of tocopherol and polyphenol. However, roasted oils showed antifungal action against Botrytis cinerea fungus, while Argan vegetable oils showed no activity against Escherichia coli, Microbacterium resistens, Staphylococcus saprophyticus, and Raoultella ornithinolytica, according to antimicrobial assays.

7.
Heliyon ; 10(17): e36964, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39286177

ABSTRACT

Baby corn, characterized by its high water activity and elevated respiration rate, poses a formidable obstacle to prolonged storage under standard ambient conditions and necessitates specialized treatments for transportation to distant locations. One of the primary postharvest challenges associated with baby corn is the occurrence of brown pigment formation because of enzymatic browning at the apex of its immature ovules, cut surfaces, and silk attached to the young ears. The present study was undertaken to investigate the effect of different blanching treatments on peroxidase inactivation, physicochemical properties, and functional properties of baby corn. The treatments applied were hot water blanching (HWB) at temperatures ranging from 70°C to 90 °C for 30-240 s, steam blanching (SB) for 30-240 s, and microwave blanching (MWB) at power levels of 360 W-900 W for 30-300 s. Results indicated that 90 % peroxidase enzyme inactivation occurred under different methods as 90 °C for 60 s for HWB, 100 °C for 60 s for SB, and 540 W for 30 s for MWB. These blanching methods have shown significant effects on the properties under investigation. MWB demonstrated the highest retention of ascorbic acid (94.15 %) and minimal color changes (ΔE = 5.72) in comparison to hot water and steam blanching. Similarly, the result for total flavonoid content for 540 W, 90 °C and 100 °C for 30, 60, and 60 s were found to be 3.01,1.99 and 2.10 mg QE/100g, phenols 48.98, 47.99 and 48.03 mg GAE/100g and DPPH (%) 42.55, 34.20 and 37.08 % respectively. The findings suggest that microwave blanching of baby corn at 540 W for 30 s holds promise to inactivate the peroxidase enzyme with better retention of physicochemical and functional properties.

8.
Open Life Sci ; 19(1): 20220946, 2024.
Article in English | MEDLINE | ID: mdl-39329022

ABSTRACT

This study investigates the osmotic dehydration process of watermelon rind using a solution composed of honey and sucrose. The impact of the ratio of rind-to-solution and temperature on the process is illustrated. Pre-treatments such as blanching, microwaves, and ultrasonication were utilized. Ultrasonication reduces the time needed for osmosis in a sample, resulting in increased fluid loss and solute uptake; therefore, it was selected as the method to investigate the kinetics and modelling of mass transfer. The effective diffusivities for water loss (ranging from 3.02 × 10-5 to 4.21 × 10-4 m2 s-1) and solid gain (ranging from 1.94 × 10-6 to 3.21 × 10-6 m2 s-1) were shown to increase with process variables such as temperature and the rind-to-solution ratio. The activation energy decreased as the process temperature increased, ranging from 3.723 to 0.928 kJ mol-1 for water loss and from 1.733 to 0.903 kJ mol-1 for solid gain, respectively. The sample treated with microwaves exhibited the maximum dehydration coefficient, rendering it appropriate for producing dehydrated products. Five empirical models were utilized, with the power law model (R 2 = 0.983) and the Magee model (R 2 = 0.950) being the most suitable for water loss data and solid gain, respectively.

9.
Ecotoxicol Environ Saf ; 285: 117092, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39332200

ABSTRACT

Environmental contamination by cadmium (Cd), a highly toxic heavy metal, poses significant health risks to plants and humans. Biochar has been effectively used to promote plant growth and productivity under Cd stress. This study presents an innovative application of biochar derived from the invasive weed Parthenium hysterophorus to promote plant growth and productivity under Cd stress. Our study includes detailed soil and plant analyses, providing a holistic perspective on how biochar and urea amendments influence soil properties, nutrient availability, and plant physiological responses. To address these, we established seven treatments: the control, Cd alone (5 mg kg-1), biochar alone (5 %), urea alone (3 g kg-1), biochar with Cd, urea with Cd, and a combination of biochar and urea with Cd. Cd stress alone significantly reduced plant growth indicators such as shoot and root length, fresh and dry biomass, chlorophyll content, and grain yield. However, the supplementation of biochar, urea, or their combination significantly increased shoot length (by 48%, 34%, and 65%), root length (by 73%, 46%, and 70%), and fresh shoot biomass (by 4%, 31%, and 4%), respectively. This improvement is attributed to enhanced soil properties and improved nutrient absorption. The biochar-urea combination also enhanced Cd tolerance by improving total chlorophyll content by 14 %, 13 %, and 16 % compared to the control, respectively. Similaly, these treatments significantly (p < 0.05) boosted the activity of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase by 51 %, 30 %, and 51 %, respectively, thereby mitigating oxidative stress as a defensive mechanism. The Cd tolerance was improved by biochar, urea, and their combinations, which reduced Cd content in the shoots (by 60.5 %, 38.9 %, and 51.3 %), roots (by 47.5 %, 23.9 %, and 57.6 %), and grains (by 58.1 %, 30.2 %, and 38.3 %) relative to Cd stress alone, respectively. The synergistic effects of biochar and urea are achieved through improved soil properties, nutrient availability, activating antioxidant defense mechanisms, and minimizing the accumulation of metal ions in plant tissues, thereby enhancing plant defenses against Cd stress. Conclusively, converting invasive Parthenium weed into biochar and combining it with urea offers an environmentally friendly solution to manage its spreading while effectively mitigating Cd stress in crops.

10.
Open Life Sci ; 19(1): 20220941, 2024.
Article in English | MEDLINE | ID: mdl-39310810

ABSTRACT

The genus Pistacia, with its species having notable ecological, economic, and medicinal implications, demonstrates remarkable environmental adaptability. The central objective of the study is to analyze interspecific variations between Pistacia atlantica subsp. atlantica and Pistacia terebinthus across three distinct bioclimatic zones in the Middle Atlas region of Morocco. The methodology includes collecting dendrometric measurements and conducting macromorphological examinations on these two taxa, with a detailed analysis of 27 qualitative and quantitative variables. A micro-morphological analysis of leaves, using scanning electron microscopy (SEM), is employed to explore specific features such as size and stomatal density, as well as qualitative aspects like epidermal cell shape and trichomes. Dendrometric measurements have revealed that the canopy surface and the number of trunks per tree can serve as distinctive features between the two species. Regarding the sex ratio of Pistacia atlantica subsp. atlantica, 59% of the examined trees are males, primarily associated with the jujube tree in arid zones and the dwarf palm in humid areas. In contrast, female Pistacia terebinthus exhibit a similar percentage, predominantly associated with oak groves and cade juniper in their distribution areas. Principal component analysis of biometric measurements emphasized a significant disparity between the two species, representing 60.25% of the total variance. The use of SEM unveiled new features facilitating the identification of the two species. By leveraging the macromorphological and micromorphological variability of pistachio trees, we can qualify those best suited to diverse bioclimates. In this regard, we suggest incorporating them into reforestation and rehabilitation programs aimed at restoring our declining ecosystems.

11.
Pol J Microbiol ; 73(3): 329-342, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39268954

ABSTRACT

Oral bacterial infections are a great health concern worldwide especially in diabetic patients. Emergence of antimicrobial resistance with reference to biofilms in oral cavity is of great concern. We investigated antibiotics combination with proton pump inhibitors against oral clinical isolates. The strains were identified as Staphylococcus epidermidis and Staphylococcus aureus by the 16S rRNA gene sequencing. In molecular docking, ciprofloxacin, levofloxacin, and omeprazole best fit to active pockets of transcriptional regulators 4BXI and 3QP1. None of the proton pump inhibitors were active against S. epidermidis, whereas omeprazole showed significant inhibition (MIC 3.9 µg/ml). Fluoroquinolones were active against both S. epidermidis and S. aureus. In combination analysis, a marked decrease in minimum inhibitory concentration was noticed with omeprazole (MIC 0.12 µg/ml). In antiquorum sensing experiments, a significant inhibitory zone was shown for all fluoroquinolones (14-20 mm), whereas among proton pump inhibitors, only omeprazole (12 ± 0.12 mm) was active against Chromobacterium violaceum. In combination analysis, a moderate increase in antiquorum sensing activity was recorded for ciprofloxacin, ofloxacin, and proton pump inhibitors. Further, significant S. aureus biofilm eradication was recorded using of ciprofloxacin, levofloxacin, and omeprazole combination (78 ± 2.1%). The time-kill kinetic studies indicated a bactericidal effect by ciprofloxacin: levofloxacin: omeprazole combination over 24 hrs. It was concluded that fluoroquinolone combined with omeprazole could be an effective treatment option for eradicating oral bacterial biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Fluoroquinolones , Microbial Sensitivity Tests , Proton Pump Inhibitors , Staphylococcus aureus , Biofilms/drug effects , Proton Pump Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Humans , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Drug Resistance, Bacterial , Mouth/microbiology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology
12.
Int J Biol Macromol ; 277(Pt 4): 134523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111492

ABSTRACT

The present study reports the green synthesis of pectin-fabricated silver nanocomposites (Pectin-AgNPs) using Carpesium nepalense leaves extract, evaluating their bactericidal kinetics, in vivo hepatoprotective, and cytotoxic potentials along with possible mechanisms. GC/MS and LC/MS analyses revealed novel phytochemicals in the plant extract. The Pectin-AgNPs were characterized using UV/Vis, AFM, SEM, TEM, DLS, FTIR, and EDX techniques, showing a spherical morphology with a uniform size range of 50-110 nm. Significant antibacterial activity (P < 0.005) was found against four bacterial strains with ZIs of 4.1 ± 0.15 to 27.2 ± 3.84 mm. AFM studies revealed significant bacterial cell membrane damage post-treatment. At 0.05 mg/kg, the nanocomposites showed significant (P < 0.005) hepatoprotective activity in biochemical and histopathology analyses compared to the CCl4 control group. Pectin-AgNPs significantly reduced (P < 0.005) LDH, AST, ALT, ALP, and DB levels. qPCR analysis showed ameliorative effects on PPARs and Nrf2 gene expression, restoring gene alterations caused by CCl4 intoxication. In vivo acute toxicity studies confirmed low toxicity of Pectin-AgNPs in major organs. Pectin-AgNPs exhibited cytotoxic activity against HeLa cell lines at higher doses with an LC50 of 223.7 µg/mL. These findings demonstrate the potential of Pectin-AgNPs as promising antibacterial, hepatoprotective, and cytotoxic agents.


Subject(s)
Anti-Bacterial Agents , Green Chemistry Technology , Nanocomposites , Pectins , Silver , Nanocomposites/chemistry , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Pectins/chemistry , Pectins/pharmacology , Humans , Animals , Asteraceae/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Kinetics , Metal Nanoparticles/chemistry , Male , HeLa Cells , Rats , Plant Leaves/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/chemical synthesis , Microbial Sensitivity Tests , Mice , Carbon Tetrachloride
13.
Food Chem X ; 23: 101680, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39184320

ABSTRACT

Identification of the chemical compositions of fatty acids and tocopherols shows the high content of linum usitatissimum oil (LO) by linolenic acid 55.3735% and γ-tocopherol 570.927 mg/kg, while argania spinosa oil (AO) is known by the dominance of oleic acid 47.77% followed by linoleic acid 31.08% as well as tocopherols by γ-tocopherols 687.485 mg/kg and δ-tocopherols 51.035 mg/kg. This difference in compositions enables us to enrich the low-stability oil and monitor its behavior during storage at a specific time and under specific conditions. In this study, pure linum usitatissimum and argania spinosa oils extracted by cold pressing as well as their formulations at proportions of (LO: AO) respectively: (80:20; 60:40, 50:50; 40:60; 20: 80) were oxidized at 60 °C for 28 days of storage, during which time the pure oils and blends were assessed for oxidative stability by studying their different fatty acid and tocopherol profiles and physicochemical characteristics such as acidity, peroxide value and chlorophyll and carotenoid pigments, as well as nutritional indexes such as the atherogenic index (AI), the thrombogenic index (TI), and the hypocholesterolemic: hypercholesterolemic ratio (HH), ω3:ω6 ratio, also the oxidative susceptibility (OS), and oxidazability value (Cox), and total phenolic compounds (TPC).

14.
Front Pharmacol ; 15: 1369659, 2024.
Article in English | MEDLINE | ID: mdl-39086396

ABSTRACT

COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.

15.
J Ethnobiol Ethnomed ; 20(1): 77, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155383

ABSTRACT

BACKGROUND: Wild food plants (WFPs) play an important role in the traditional dietary habits of various indigenous communities worldwide, particularly in mountainous regions. To understand the dynamics of food preferences, cross-cultural studies on food plants should be conducted across diverse ethnic groups in a given area. In this context, the current study investigated the use of WFPs by seven different cultural groups in the Kashmir Himalayan Region. In this area, people gather wild plants and their parts for direct consumption, traditional foods, or sale in local markets. Despite this reliance, documentation of the food system, especially concerning WFPs, is notably lacking. Hence, our research aimed to document WFPs, along with associated traditional ecological knowledge, and identify major threats to their long-term sustainability in Division Muzaffarabad. METHODS: Through a comprehensive approach involving questionnaires, interviews, focus groups, and market surveys, we gathered data from 321 respondents. PCA was performed to analyze threats and plant use using "factoextra" in R software. Origin Pro was used to create a chord diagram, while R software was used to generate a Polar heat map. Additionally, a Venn diagram was created using Bioinformatics software. RESULTS: The study included 321 informants, of whom 75.38% were men and 24.61% were women. In total, 113 plant taxa from 74 genera and 41 botanical families were reported. Polygonaceae and Rosaceae accounted for the majority (17 species each), followed by Lamiaceae (7 species). Leaves were the most used part as food sources (41.04%), followed by fruits (33.33%). Most of the species are consumed as cooked (46.46%) and as raw snacks (37.80%). A total of 47 plant species were collected and cooked as wild vegetables, followed by 40 species used as fruits. This study is the first to describe the market potential and ecological distribution of WFPs in the study area. Cross-comparison showed that utilization of WFPs varies significantly across the region and communities, including their edible parts and mode of consumption. Jaccard index (JI) value ranged from 5.81 to 25. Furthermore, the current study describes 29 WFPs and 10 traditional food dishes that have rarely been documented in Pakistan's ethnobotanical literature. Climate change, invasive species, expansion of agriculture, and plant diseases are some of the most significant threats to WFPs in the study area. CONCLUSIONS: The older age group has more knowledge about WFPs compared to the younger generation, who are not interested in learning about the utilization of WFPs. This lack of interest in information about WFPs among the younger generation can be attributed to their limited access to markets and availability of food plants in the study area. Traditional gathering of food plants has been reduced in younger generations during recent years; therefore, it is crucial to develop effective conservation strategies. These efforts not only safeguard indigenous flora, food knowledge, and cultural heritage, but they also contribute to food security and public health by utilizing local wild foods in the examined area.


Subject(s)
Food Security , Plants, Edible , Humans , Female , Male , India , Adult , Middle Aged , Cross-Cultural Comparison , Ethnobotany , Knowledge , Young Adult , Aged , Ecology
16.
Open Life Sci ; 19(1): 20220879, 2024.
Article in English | MEDLINE | ID: mdl-39005739

ABSTRACT

The corrosion of metals poses a threat to the economy, the environment, and human health due to undesirable reactions and contaminated products. Corrosion inhibitors, including natural products, can play a key role in protecting metallic materials, especially under challenging conditions. In this study, the roots of the Inula viscosa plant were examined for their ability to act as corrosion inhibitors in a 1 M hydrochloric acid (HCl) solution. Different extracts of the plant were evaluated for their corrosion inhibition capacity in a 1 M HCl solution. The effectiveness of different plant extracts was assessed, including an aqueous extract, an ethanolic extract, and a combined water-ethanol extract. Compounds present in the roots of Inula viscosa were identified using high-performance liquid chromatography. The electrochemical properties of the extracts were studied using various techniques such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization. Additionally, surface analysis after immersion was performed using scanning electron microscopy. Electrochemical data revealed that Inula viscosa root (IVR) extracts acted as mixed-type corrosion inhibitors with pronounced cathodic characteristics. The inhibitory efficiency was closely related to the concentration of Inula viscosa (I. viscosa), showing a significant increase with higher concentrations. This resulted in a decrease in corrosion current and an increase in polarization resistance. Notably, inhibitory efficiency reached high levels, up to 97.7% in mixed extract which represents a mixture between water and ethanol. In our study, it was observed that the mixed extract (water + ethanol) allowed for a greater corrosion inhibition compared to the other solvents studied, 97.7%. Surface analyses confirmed the formation of an organic film layer on the steel surface, attributed to the bonding of functional groups and heteroatoms in I. viscosa components. Therefore, this study paves the way for the potential integration of I. viscosa as a promising corrosion inhibition material, offering durable protection against steel corrosion and opening avenues for various related applications.

17.
Environ Geochem Health ; 46(8): 272, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958785

ABSTRACT

Mycotoxin contamination poses a significant problem in developing countries, particularly in northern Pakistan's fluctuating climate. This study aimed to assess aflatoxin contamination in medicinal and condiment plants in Upper Dir (dry-temperate) and Upper Swat (moist-temperate) districts. Plant samples were collected and screened for mycotoxins (Aflatoxin-B1 and Aflatoxin-B-2). Results showed high levels of AFB-1 (11,505.42 ± 188.82) as compared to AFB-2 (846 ± 241.56). The maximum contamination of AFB-1 in Coriandrum sativum (1154.5 ± 13.43 ng to 3328 ± 9.9 ng) followed by F. vulgare (883 ± 9.89 ng to 2483 ± 8.4 ng), T. ammi (815 ± 11.31 ng to 2316 ± 7.1 ng), and C. longa (935.5 ± 2.12 ng to 2009 ± 4.2 ng) while the minimum was reported in C. cyminum (671 ± 9.91 ng to 1995 ± 5.7 ng). Antifungal tests indicated potential resistance in certain plant species (C. cyminum) while A. flavus as the most toxins contributing species due to high resistance below 80% (54.2 ± 0.55 to 79.5 ± 2.02). HPLC analysis revealed hydroxyl benzoic acid (5136 amu) as the dominant average phytochemical followed by phloroglucinol (4144.31 amu) with individual contribution of 8542.08 amu and 12,181.5 amu from C. cyaminum. The comparison of average phytochemicals revealed the maximum concentration in C. cyminum (2885.95) followed by C. longa (1892.73). The findings revealed a statistically significant and robust negative correlation (y = - 2.7239 × + 5141.9; r = - 0.8136; p < 0.05) between average mycotoxins and phytochemical concentrations. Temperature positively correlated with aflatoxin levels (p < 0.01), while humidity had a weaker correlation. Elevation showed a negative correlation (p < 0.05), while geographical factors (latitude and longitude) had mixed correlations (p < 0.05). Specific regions exhibited increasing aflatoxin trends due to climatic and geographic factors.


Subject(s)
Aflatoxins , Phytochemicals , Pakistan , Aflatoxins/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Climate
18.
BMC Infect Dis ; 24(1): 688, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987682

ABSTRACT

BACKGROUND: Dengue fever has become a significant worldwide health concern, because of its high morbidity rate and the potential for an increase in mortality rates due to lack of adequate treatment. There is an immediate need for the development of effective medication for dengue fever. METHODS: Homology modeling of dengue virus (DENV) non-structural 4B (NS4B) protein was performed by SWISS-MODEL to predict the 3D structure of the protein. Structure validation was conducted using PROSA, PROCHECK, Ramachandran plot, and VERIFY-3D. MOE software was used to find out the in-Silico inhibitory potential of the five triterpenoids against the DENV-NS4B protein. RESULTS: The SWISS-MODEL was employed to predict the three-dimensional protein structure of the NS4B protein. Through molecular docking, it was found that the chosen triterpenoid NS4B protein had a high binding affinity interaction. It was observed that the NS4B protein binding energy for 15-oxoursolic acid, betulinic acid, ursolic acid, lupeol, and 3-o-acetylursolic acid were - 7.18, - 7.02, - 5.71, - 6.67 and - 8.00 kcal/mol, respectively. CONCLUSIONS: NS4B protein could be a promising target which showed good interaction with tested triterpenoids which can be developed as a potential antiviral drug for controlling dengue virus pathogenesis by inhibiting viral replication. However, further investigations are necessary to validate and confirm their efficacy.


Subject(s)
Antiviral Agents , Dengue Virus , Molecular Docking Simulation , Triterpenes , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Dengue Virus/drug effects , Dengue Virus/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protein Binding , Humans , Dengue/virology , Dengue/drug therapy , Protein Conformation , Membrane Proteins
19.
Open Life Sci ; 19(1): 20220895, 2024.
Article in English | MEDLINE | ID: mdl-38947765

ABSTRACT

Chenopodium ambrosioides aerial parts have been historically employed in traditional medicine for addressing various ailments such as headaches, abdominal discomfort, joint issues, and respiratory disorders, alongside treatments for lice and warts. This study aimed to conduct a comprehensive phytochemical analysis of C. ambrosioides and assess the acute and subacute toxicity of oral treatments using fractions in preclinical trials. Spectrophotometric analysis via LC-MS/MS was used to characterize the plant's chemical composition. Acute toxicity evaluation followed Organisation for Economic Co-operation and Development code 42 guidelines, conducted on adult male and female Wistar strain mice. Subsequently, Swiss mice were divided into six groups for the subacute toxicity study, receiving oral doses of 200 mg/kg extracts and fractions for 28 days. Daily observations and biochemical analyses were performed, with LC-MS/MS revealing a diverse array of compounds including organic acids, flavonoids, phenolic acids, rutin, hesperidin, nicotiflorine, and fumaric acid. Results indicated no lethality or alterations in body weight in treated groups, though some organ weight changes were noted. Biochemical analyses demonstrated values within the normal range for all groups, suggesting that the treatments did not induce adverse effects. Acute and subacute treatments with fractions did not result in lethality or toxic alterations at therapeutic doses, implying the safety of the product at appropriate levels. This study underscores the potential of C. ambrosioides as a safe therapeutic option warranting further exploration.

20.
Food Chem X ; 23: 101554, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39036476

ABSTRACT

Corn silk (Zea mays L.), an abundant agricultural waste, contains various bioactive compounds that exhibit promising health benefits. The current study focuses on development and optimization of corn silk-based instant mix using response surface methodology. The optimized product, with 14.66% corn silk, 10% sugar and 0.22% xanthan gum in a skim milk powder base, scored 0.925 desirability. The physico-chemical and sensory parameters of optimized mix closely aligned with expected values. The instant mix packaged in metallised polyester yielded superior preservation of quality indicators over 120 days compared to low-density polyethylene (LDPE) and high-density polyethylene (HDPE). The microbial load in corn silk instant mix was observed across packaging materials and highlighting hydroxyl methyl furfural (HMF) as the primary predictor of product stability, the study calculated a 94.95 days half-life at 10 °C. Corn silk's rich bioactive compound supports its integration into nutraceuticals and instant mixes, mitigating food waste while enhancing nutritional value. Novelty statement. In this study, corn silk powder was utilized for the development of the instant mix. This innovative approach transforms corn silk, typically discarded as agricultural waste, into a commercially sustainable product that delivers the nutrients of corn silk to a broader population. Despite fresh corn silk being a perishable commodity, it has very low storage shelf life. The developed instant mix effectively preserves its nutritional value for up to six months, offering a sustainable and nutritious option for consumers.

SELECTION OF CITATIONS
SEARCH DETAIL