Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
RSC Adv ; 14(43): 31409-31421, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39380649

ABSTRACT

Dihydrofolate reductase (DHFR) is a crucial enzyme involved in folate metabolism and serves as a prime target for anticancer and antimicrobial therapies. In this study, a series of 4-pyrrolidine-based thiosemicarbazones were synthesized and evaluated for their DHFR inhibitory activity. The synthesis involved a multistep procedure starting from readily available starting materials, leading to the formation of diverse thiosemicarbazone 5(a-r) derivatives. These compounds were then subjected to in vitro assays to evaluate their inhibitory potential against DHFR enzyme. The synthesized compounds 5(a-r) exhibited potent inhibition with IC50 values in the range of 12.37 ± 0.48 µM to 54.10 ± 0.72 µM. Among all the derivatives 5d displayed highest inhibitory activity. Furthermore, molecular docking and ADME studies were performed to understand the binding interactions between the synthesized compounds and the active site of DHFR. The in vitro and in silico data were correlated to identify compounds with promising inhibitory activity and favorable binding modes. This comprehensive study provides insights into the structure-activity relationships of 4-pyrrolidine-based thiosemicarbazones as DHFR inhibitors, offering potential candidates for further optimization towards the development of novel therapeutic agents.

2.
RSC Adv ; 14(39): 28524-28542, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39247501

ABSTRACT

Developing new anti-tyrosinase drugs seems crucial for the medical and industrial fields since irregular melanin synthesis is linked to the resurgence of several skin conditions, including melanoma, and the browning of fruits and vegetables. A novel series of N-1 and C-3 substituted indole-based thiosemicarbazones 5(a-r) are synthesized and further analyzed for their inhibition potential against tyrosinase enzyme through in vitro assays. The synthesized compounds displayed very good to moderate inhibition with half maximal inhibitory concentration in the range of 12.40 ± 0.26 µM to 47.24 ± 1.27 µM. Among all the derivatives 5k displayed the highest inhibitory activity. According to SAR analysis, the derivatives with 4-substitution at the benzyl or phenyl ring of the thiosemicarbazones exhibited better inhibitory potential against tyrosinase. In silico analysis (including ADMET prediction and molecular docking) was conducted and compared with the standard drug (kojic acid). These findings may help the hunt for new melanogenesis inhibitors that the food and cosmetics industries may find valuable.

3.
RSC Adv ; 14(40): 29288-29300, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39285881

ABSTRACT

Diabetes mellitus has become a major global health burden because of several related consequences, including heart disease, retinopathy, cataracts, metabolic syndrome, collapsed renal function, and blindness. In the recent study, thirty Schiff base derivatives of 1,3-diphenylurea were synthesized and their anti-diabetic activity was evaluated by targeting α-glucosidase. The compounds exhibited an overwhelming inhibitory potential for α-glucosidase with higher potency ranging from 2.49-37.16 µM. The most effective compound, 5h, showed competitive inhibition of α-glucosidase (K i = 3.96 ± 0.0048 µM) in the kinetic analysis and strong binding interactions with key residues α-glucosidase in docking analysis, indicating its potential for better glycemic control in diabetes patients.

4.
Curr Med Chem ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39318003

ABSTRACT

INTRODUCTION: Prolyl oligopeptidase (POP) is a pivotal druggable target implicated in diverse biological processes and linked to the development of various ailments, including neurodegenerative disorders. While conventional peptide-based inhibitors have been a centerpiece, their limitations, such as restricted bioavailability, necessitate exploration of non-peptidic inhibitors for their therapeutic potential. METHOD: This study focuses on designing, synthesizing, and assessing morpholine-based hydrazones targeting the catalytic serine residue of POP. The hydrazones (5a-o), reported as moderately potent analogs compared to the renowned Z-Pro-Prolinal, demonstrated in vitro POP inhibition with IC50 values ranging from 13.60 ± 2.51 to 36.51 ± 1.82 µM. The derivative 5h, with an IC50 of 13.60 ± 2.51 µM, emerged as the most potent inhibitor. RESULTS: Moreover, the in vitro kinetic study of compound 5h indicated that it exhibited concentration-dependent type of inhibition. in silico docking studies of 5h revealed robust interactions in the POP enzyme's active site, yielding a docking score of -6.30 Kcal/- mol, consistent with experimental results. CONCLUSION: All findings underscored the potential of synthesized derivatives for drug development.

5.
Curr Med Chem ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39318001

ABSTRACT

INTRODUCTION: The pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally. METHOD: Inhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. in vitro and in silico techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles against the SARS-CoV-2 spike protein. RESULT: Interestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds 6k (91.83%), 6j (89.75%), 6m (87.69%),6i (86.60%), 6l (85.40%), 6h (84.70%), 6l (84.70%), 6g (83.40%), 6b (82.60%), 6f (81.90%), while compounds 6d 6a, 6c, and 6e exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced in silico, which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function. CONCLUSION: The combined in vitro and in silico investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.

6.
Sci Rep ; 14(1): 22645, 2024 09 30.
Article in English | MEDLINE | ID: mdl-39349528

ABSTRACT

Dihydrofolate reductase (DHFR), an essential enzyme in folate metabolism, presents a promising target for drug development against various diseases, including cancer and tuberculosis. Herein, we present an integrated approach combining in vitro biochemical assays with in silico molecular docking analysis to evaluate the inhibitory potential of 4-piperidine-based thiosemicarbazones 5(a-s) against DHFR. In our in vitro study, a novel series of 4-piperidine-based thiosemicarbazones 5(a-s) were assessed for their inhibitory activity against DHFR enzyme. The synthesized compounds 5(a-s) exhibited potent inhibition with IC50 values in the range of 13.70 ± 0.25 µM to 47.30 ± 0.86 µM. Among all the derivatives 5p displayed highest inhibitory activity. Simultaneously, in silico analysis were performed and compared with standard drug (Methotrexate) to predict the binding affinity and interaction pattern of synthesized compounds with DHFR active site. SAR analysis was done to elucidate how structural modifications impact compound's biological activity, guiding the rational design of potent and selective drug candidates for targeted diseases. These findings may provide a comprehensive assessment of 4-piperdine-based thiosemicarbazones as DHFR inhibitors and contribute to the development of novel therapeutics targeting DHFR-associated diseases.


Subject(s)
Drug Design , Folic Acid Antagonists , Molecular Docking Simulation , Piperidines , Tetrahydrofolate Dehydrogenase , Thiosemicarbazones , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemical synthesis , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/chemical synthesis , Structure-Activity Relationship , Humans , Catalytic Domain , Computer Simulation , Protein Binding
7.
Data Brief ; 57: 110884, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39314897

ABSTRACT

Honey production is susceptible to manipulation by unscrupulous sellers, making honey authentication crucial to prevent fraud. The process of authenticating honey often necessitates the use of various analytical techniques, such as identifying the chemicals present in honey by means of hyphenated mass spectrometry. Here, we report on the investigation of the chemical composition of three honey samples collected at two locations in Lombok and Bali by liquid chromatography mass spectrometry (LC-MS). The three datasets include information regarding compound name, mass, retention times, as well as findings from database searches. Collectively, these data afford first insights into the compositional profile of honey samples from this specific geographical area.

8.
Bioorg Chem ; 153: 107822, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39305609

ABSTRACT

Carbonic anhydrase II (CA II) is crucial for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance. It is a pivotal druggable target which is implicated in glaucoma, renal, gastric, and pancreatic carcinomas, as well as in malignant brain tumours. Therefore, to identify new CA II (bovine) inhibitors, the current study was designed to synthesize a library of 20 new triazole-linked hydrazones (6a-t). All compounds were characterized by using spectroscopic techniques such as NMR and mass spectrometry. The in-vitro evaluation resulted in impressive inhibitory capability against CA II with IC50 values ranging from 9.10 ± 0.26-48.26 ± 1.30 µM. Among all derivatives, compounds 6a, 6b, 6d, 6k-6m, 6q, 6s and 6t exhibited potent inhibitory potential with 6t deemed as the most active inhibitor. Additionally, kinetic study of the hybrid 6t revealed concentration dependent type of inhibition with Ki value 7.24 ± 0.0086 µM. Furthermore, molecular docking of 6t correlates well with the kinetic analysis. The in-silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development.

9.
Phytomedicine ; 133: 155928, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126924

ABSTRACT

BACKGROUND: The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE: This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS: Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS: Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION: Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Edema , Hypoglycemic Agents , Oils, Volatile , Scutellaria , Animals , Scutellaria/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Edema/drug therapy , Analgesics/pharmacology , Analgesics/chemistry , Male , Mice , Molecular Docking Simulation , Carrageenan , Gas Chromatography-Mass Spectrometry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Aromatherapy/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
10.
Int J Biol Macromol ; 277(Pt 4): 134476, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111477

ABSTRACT

The single-stranded RNA genome of SARS-CoV-2 encodes several structural and non-structural proteins, among which the papain-like protease (PLpro) is crucial for viral replication and immune evasion and has emerged as a promising therapeutic target. The current study aims to discover new inhibitors of PLpro that can simultaneously disrupt its protease and deubiquitinase activities. Using multiple computational approaches, six compounds (CP1-CP6) were selected from our in-house compounds database, with higher docking scores (-7.97 kcal/mol to -8.14 kcal/mol) and fitted well in the active pocket of PLpro. Furthermore, utilizing microscale molecular dynamics simulations (MD), the dynamic behavior of selected compounds was studied. Those molecules strongly binds at the PLpro active site and forms stable complexes. The dynamic motions suggest that the binding of CP1-CP6 brought the protein to a closed conformational state, thereby altering its normal function. In an in vitro evaluation, CP2 showed the most significant inhibitory potential for PLpro (protease activity = 2.71 ± 0.33 µM and deubiquitinase activity = 3.11 ± 0.75 µM), followed by CP1, CP5, CP4 and CP6. Additionally, CP1-CP6 showed no cytotoxicity at a concentration of 30 µM in the human BJ cell line.


Subject(s)
Coronavirus Papain-Like Proteases , Deubiquitinating Enzymes , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Humans , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/chemistry , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Biological Products/pharmacology , Biological Products/chemistry , COVID-19 Drug Treatment , COVID-19/virology , Protein Binding
11.
RSC Adv ; 14(30): 21355-21374, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38979463

ABSTRACT

Carbonic anhydrase CA-II enzyme is essential for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance due to its vital function within cellular processes. Herein, we screened 25 newly synthesized thiazole derivatives and assessed their inhibitory potential against the zinc-containing carbonic anhydrase CA-II enzyme. Intriguingly, derivatives of thiazole exhibited varying degrees of inhibitory action against CA-II. The distinctive attribute of these compounds is that they can attach to the CA-II binding site and block its action. Morpholine based thiazoles can be strategically modified to improve bovine CA-II inhibitor binding affinity, selectivity, and pharmacokinetics. Thiazole and morpholine moieties can boost inhibitory efficacy and selectivity over other calcium-binding proteins by interacting with target bovine CA-II binding sites. The derivatives 23-26 exhibited greater affinity when compared to the standard acetazolamide. Furthermore, kinetic study of the most potent compound 24 was performed, which exhibited concentration dependent inhibition with a K i value of 9.64 ± 0.007 µM. Molecular docking, MD simulation and QSAR analysis was also carried out to elucidate the interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, pharmacokinetic assessments showed that most of the compounds possess attributes conducive to potential drug development.

12.
Int J Biol Macromol ; 275(Pt 1): 133571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960243

ABSTRACT

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors. The current study seeks to contribute to the identification of efficacious POP inhibitors through the design, synthesis, and comprehensive evaluation (both in vitro and in silico) of thiazolyl thiourea derivatives (5a-r). In vitro experimentation exhibited that the compounds displayed significant higher potency as POP inhibitors. Compound 5e demonstrated an IC50 value of 16.47 ± 0.54 µM, representing a remarkable potency. A meticulous examination of the structure-activity relationship indicated that halogen and methoxy substituents were the most efficacious. In silico investigations delved into induced fit docking, pharmacokinetics, and molecular dynamics simulations to elucidate the intricate interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, our pharmacokinetic assessments confirmed that the majority of the synthesized compounds possess attributes conducive to potential drug development.


Subject(s)
Molecular Docking Simulation , Prolyl Oligopeptidases , Serine Endopeptidases , Thiourea , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/chemical synthesis , Thiourea/analogs & derivatives , Structure-Activity Relationship , Humans , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Molecular Dynamics Simulation , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemical synthesis , Models, Molecular , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Catalytic Domain , Chemistry Techniques, Synthetic
13.
Cureus ; 16(6): e61739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975528

ABSTRACT

Background Due to their delayed onset of symptoms, atrial septal defects (ASDs) are common congenital cardiac defects that are frequently identified in adulthood. In cases of complicated ASD morphology, transcatheter closure employing devices such as the Amplatzer septal occluder (ASO) presents with difficulties. While the Amplatzer cribriform occluder (ACO) has gained popularity as a specialized option, little is known about its initial use or results, especially in older patients. Objective The goal of this study was to describe the early experience with ACO in patients aged 18 to 38 years who had ASDs at a tertiary care hospital in Pakistan, with a focus on the device's efficacy, safety, and viability. Methods A total of six cases with ASD who underwent ASD closure with the ACO were retrospectively reviewed at Lady Reading Hospital-Medical Teaching Institution (LRH-MTI), Peshawar, Pakistan. All the required data were obtained from the hospital management information system (HMIS), including patient demographics, defect features, procedure specifics, complications, and outcomes. Results Of all patients, 83.3% (n=5) were females and 16.7% (n=1) were males, and the mean age of the group was 27.7 ± 7.9 years. The results of echocardiography showed variation, with a mean fenestrated septum size of 22.4 mm (SD ± 5.4) and a range of device sizes between 18 and 35 mm. The ideal access method for device deployment in every situation was the right femoral vein. There were very few complications; in one instance, a residual shunt necessitated replacing the device. During the six-month follow-up, no complications were found, and all patients were discharged without any problems. Conclusion In conclusion, our study indicates that the ACO is a good choice for young adult patients' ASD closure, showing good safety and efficacy. To verify these results and evaluate the long-term functioning of the device, more prospective trials with larger cohorts are required.

14.
Heliyon ; 10(12): e33094, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948039

ABSTRACT

The unique floral fingerprint embedded within honey holds valuable clues to its geographical and botanical origin, playing a crucial role in ensuring authenticity and detecting adulteration. Honey from native Apis cerana and Heterotrigona itama bees in Karangasem, Indonesia, was examined utilizing pollen DNA metabarcoding for honey source identification. In this study, we used ITS2 amplicon sequencing to identify floral DNA in honey samples. The finding reveals distinct pollen signatures for each bee species. Results analysis showed A. cerana honey generated 179,267 sequence reads, assembled into Amplicon Sequence Variants (ASVs) with a total size of 485,932 bp and an average GC content of 59 %. H. itama honey generated 177,864 sequence reads, assembled into ASVs with a total size of 350,604 bp and an average GC content of 57 %. A. cerana honey exhibited a rich tapestry of pollen from eleven diverse genera, with Schleichera genus dominating at an impressive relative read abundance of 72.8 %. In contrast, H. itama honey displayed a remarkable mono-dominance of the Syzygium genus, accounting for a staggering 99.95 % of its pollen composition or relative read abundance, highlighting their distinct foraging preferences and floral resource utilization. Notably, all identified pollen taxa were indigenous to Karangasem, solidifying the geographical link between honey and its origin. This study demonstrates pollen DNA metabarcoding may identify honey floral sources. By using pollen profiles from different bee species and their foraging patterns, we may protect consumers against honey adulteration and promote sustainable beekeeping in Karangasem district. Future research could explore expanding the database of reference pollen sequences and investigating the influence of environmental factors on pollen composition in honey. Investigating this technology's economic and social effects on beekeepers and consumers may help promote fair trade and sustainable beekeeping worldwide.

15.
Sci Rep ; 14(1): 14122, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898099

ABSTRACT

Southern Asian flowers offer honeybees a diversity of nectar. Based on its geographical origin, honey quality varies. Traditional methods are less authentic than DNA-based identification. The origin of honey is determined by pollen, polyphenolic, and macro-microorganisms. In this study, amplicon sequencing targets macro-microorganisms in eDNA using the ITS1 region to explore honey's geographical location and authentication. The variety of honey samples was investigated using ITS1 with Illumina sequencing. For all four honey samples, raw sequence reads showed 979,380 raw ITS1 amplicon reads and 375 ASVs up to the phylum level. The highest total number of 202 ASVs up to phylum level identified Bali honey with 211,189 reads, followed by Banggi honey with 309,207 a total number of 111 ASVs, and Lombok represents only 63 ASVs up to phylum level with several read 458,984. Based on Shannon and Chao1, honey samples from Bali (B2) and (B3) exhibited higher diversity than honey from Lombok (B1) and green honey from Sabah (B4), while the Simpson index showed that Banggi honey (B4) had higher diversity. Honey samples had significant variance in mycobiome taxonomic composition and abundance. Zygosaccharomyces and Aspergillus were the main genera found in Lombok honey, with percentages of 68.81% and 29.76% respectively. Bali honey samples (B2 and B3) were identified as having a significant amount of the genus Aureobasidium, accounting for 40.81% and 25% of the readings, respectively. The microbiome composition of Banggi honey (B4) showed a high presence of Zygosaccharomyces 45.17% and Aureobasidium 35.24%. The ITS1 analysis effectively distinguishes between honey samples of different origins and its potential as a discriminatory tool for honey origin and authentication purposes.


Subject(s)
Honey , Animals , Asia, Southeastern , Bees/genetics , Bees/microbiology , DNA, Intergenic/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Honey/analysis , Islands , Mycobiome/genetics , Pollen
16.
Sci Rep ; 14(1): 12588, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38822113

ABSTRACT

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Schiff Bases , Spike Glycoprotein, Coronavirus , Urea , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Humans , COVID-19 Drug Treatment , COVID-19/virology
17.
Sci Rep ; 14(1): 11410, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762658

ABSTRACT

A series of novel Schiff base derivatives (1-28) of 3,4-dihydroxyphenylacetic acid were synthesized in a multi-step reaction. All the synthesized Schiff bases were obtained in high yields and their structures were determined by 1HNMR, 13CNMR, and HR-ESI-MS spectroscopy. Except for compounds 22, 26, 27, and 28, all derivatives show excellent to moderate α-glucosidase inhibition. Compounds 5 (IC50 = 12.84 ± 0.52 µM), 4 (IC50 = 13.64 ± 0.58 µM), 12 (IC50 = 15.73 ± 0.71 µM), 13 (IC50 = 16.62 ± 0.47 µM), 15 (IC50 = 17.40 ± 0.74 µM), 3 (IC50 = 18.45 ± 1.21 µM), 7 (IC50 = 19.68 ± 0.82 µM), and 2 (IC50 = 20.35 ± 1.27 µM) shows outstanding inhibition as compared to standard acarbose (IC50 = 873.34 ± 1.67 µM). Furthermore, a docking study was performed to find out the interaction between the enzyme and the most active compounds. With this research work, 3,4-dihydroxyphenylacetic acid Schiff base derivatives have been introduced as a potential class of α-glucosidase inhibitors that have remained elusive till now.


Subject(s)
3,4-Dihydroxyphenylacetic Acid , Drug Design , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Schiff Bases , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives , 3,4-Dihydroxyphenylacetic Acid/chemistry , 3,4-Dihydroxyphenylacetic Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Structure-Activity Relationship
18.
PLoS One ; 19(4): e0301213, 2024.
Article in English | MEDLINE | ID: mdl-38578814

ABSTRACT

Limited honey production worldwide leads to higher market prices, thus making it prone to adulteration. Therefore, regular physicochemical analysis is imperative for ensuring authenticity and safety. This study describes the physicochemical and antioxidant properties of Apis cerana honey sourced from the islands of Lombok and Bali, showing their unique regional traits. A comparative analysis was conducted on honey samples from Lombok and Bali as well as honey variety from Malaysia. Moisture content was found slightly above 20% in raw honey samples from Lombok and Bali, adhering to the national standard (SNI 8664:2018) of not exceeding 22%. Both honey types displayed pH values within the acceptable range (3.40-6.10), ensuring favorable conditions for long-term storage. However, Lombok honey exhibited higher free acidity (78.5±2.14 meq/kg) than Bali honey (76.0±1.14 meq/kg), surpassing Codex Alimentarius recommendations (≤50 meq/kg). The ash content, reflective of inorganic mineral composition, was notably lower in Lombok (0.21±0.02 g/100) and Bali honey (0.14±0.01 g/100) compared to Tualang honey (1.3±0.02 g/100). Electric conductivity, indicative of mineral content, revealed Lombok and Bali honey with lower but comparable values than Tualang honey. Hydroxymethylfurfural (HMF) concentrations in Lombok (14.4±0.11 mg/kg) and Bali (17.6±0.25 mg/kg) were slightly elevated compared to Tualang honey (6.4±0.11 mg/kg), suggesting potential processing-related changes. Sugar analysis revealed Lombok honey with the highest sucrose content (2.39±0.01g/100g) and Bali honey with the highest total sugar content (75.21±0.11 g/100g). Both honeys exhibited lower glucose than fructose content, aligning with Codex Alimentarius guidelines. The phenolic content, flavonoids, and antioxidant activity were significantly higher in Lombok and Bali honey compared to Tualang honey, suggesting potential health benefits. Further analysis by LC-MS/MS-QTOF targeted analysis identified various flavonoids/flavanols and polyphenolic/phenolic acid compounds in Lombok and Bali honey. The study marks the importance of characterizing the unique composition of honey from different regions, ensuring quality and authenticity in the honey industry.


Subject(s)
Antioxidants , Honey , Bees , Animals , Antioxidants/chemistry , Honey/analysis , Indonesia , Chromatography, Liquid , Tandem Mass Spectrometry , Minerals/analysis , Flavonoids/analysis , Sugars
19.
Arch Pharm (Weinheim) ; 357(8): e2400140, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38687119

ABSTRACT

Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 µM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 µM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.


Subject(s)
Chromones , Diabetes Mellitus, Type 2 , Drug Design , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Thiosemicarbazones , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Structure-Activity Relationship , alpha-Glucosidases/metabolism , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Molecular Structure , Humans , Molecular Dynamics Simulation , Computer Simulation , Dose-Response Relationship, Drug
20.
Sci Rep ; 14(1): 7675, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561470

ABSTRACT

A serine protease called prolyl endopeptidase (PEP) hydrolyses the peptide bonds on the carboxy side of the proline ring. The excessive PEP expression in brain results in neurodegenerative illnesses like dementia, Alzheimer's disease, and Parkinson's disease. Results of the prior studies on antioxidant activity, and the non-cytotoxic effect of bi-carbazole-linked triazoles, encouraged us to extend our studies towards its anti-diabetic potential. Hence, for this purpose all compounds 1-9 were evaluated to reveal their anti-prolyl endo peptidase activity. Fortunately, seven compounds resulted into significant inhibitory capability ranging from 26 to 63 µM. Among them six compounds 4-9 exhibited more potent inhibitory activity with IC50 values 46.10 ± 1.16, 42.30 ± 1.18, 37.14 ± 1.21, 26.29 ± 0.76, 28.31 ± 0.64 and 31.11 ± 0.84 µM respectively, while compound 3 was the least active compound in the series with IC50 value 63.10 ± 1.58 µM comparing with standard PEP inhibitor bacitracin (IC50 = 125 ± 1.50 µM). Moreover, mechanistic study was performed for the most active compounds 7 and 8 with Ki values 24.10 ± 0.0076 and 23.67 ± 0.0084 µM respectively. Further, the in silico studies suggested that the compounds exhibited potential interactions and significant molecular conformations, thereby elucidating the structural basis for their inhibitory effects.


Subject(s)
Peptide Hydrolases , Triazoles , Triazoles/pharmacology , Triazoles/chemistry , Prolyl Oligopeptidases , Serine Endopeptidases , Carbazoles , Structure-Activity Relationship , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL