Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Drug Dev Ind Pharm ; 50(2): 173-180, 2024 Feb.
Article En | MEDLINE | ID: mdl-38265062

OBJECTIVES: Glimepiride Orodispersable Tablets (ODT) were prepared with the goal to have rapid onset of action and higher bioavailability with ease administration to individuals with swallowing difficulty to ameliorate patient compliance. SIGNIFICANCE: Glimepiride is a contemporary hypoglycemic medication that belongs to the family of sulfonylurea derivatives. It is used in type 2 diabetes mellitus. Compliance adherence remains one of the limitations with the conventional drug delivery system especially in pediatric, geriatric, psychiatric, and traveling patients, for such population ODT provides a good alternate dosage form compared with Commercial Tablets. METHOD: The Comparative in vivo pharmacokinetic parameters of the prepared ODT and conventional tablets (CT) were evaluated using an animal model. The plasma concentration of Glimepiride after oral administration of a single dose was determined at predetermined time intervals with HPLC. The pharmacokinetic parameters were calculated using PK Solutions 2.0 from Summit PK® software. RESULTS: The Cmax obtained with ODT (22.08 µg/ml) was significantly (p = 0.006) high, a lower tmax of 3.0 hr was achieved with the orodispersable formulation of the drug. The ODT showed 104.34% relative bioavailability as compared to CT and left shift of tmax as well. CONCLUSION: As per findings of the in vivo investigation, the Glimepiride ODT would be beneficial in terms of patient compliance, quick onset of action, and increased bioavailability.


Diabetes Mellitus, Type 2 , Animals , Child , Humans , Rabbits , Aged , Diabetes Mellitus, Type 2/drug therapy , Sulfonylurea Compounds/pharmacokinetics , Hypoglycemic Agents , Tablets , Administration, Oral
2.
J Phys Condens Matter ; 30(19): 195805, 2018 May 16.
Article En | MEDLINE | ID: mdl-29565262

The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (NGa), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (FS or FGa) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for FGa and F adsorption at the Ga site, a strong F-Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, FGa induces p-type conductivity in GaS, whereas FS induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N2 molecules. While NGa induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic NS impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.

...