Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Molecules ; 26(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34770919

Choline is an officially established essential nutrient and precursor of the neurotransmitter acetylcholine. It is employed as a cholinergic activity marker in the early diagnosis of brain disorders such as Alzheimer's and Parkinson's disease. Low levels of choline in diets and biological fluids, such as blood plasma, urine, cerebrospinal and amniotic fluid, could be an indication of neurological disorder, fatty liver disease, neural tube defects and hemorrhagic kidney necrosis. Meanwhile, it is known that choline metabolism involves oxidation, which frees its methyl groups for entrance into single-C metabolism occurring in three phases: choline oxidase, betaine synthesis and transfer of methyl groups to homocysteine. Electrocatalytic detection of choline is of physiological and pathological significance because choline is involved in the physiological processes in the mammalian central and peripheral nervous systems and thus requires a more reliable assay for its determination in biological, food and pharmaceutical samples. Despite the use of several methods for choline determination, the superior sensitivity, high selectivity and fast analysis response time of bioanalytical-based sensors invariably have a comparative advantage over conventional analytical techniques. This review focuses on the electrocatalytic activity of nanomaterials, specifically carbon nanotubes (CNTs), CNT nanocomposites and metal/metal oxide-modified electrodes, towards choline detection using electrochemical sensors (enzyme and non-enzyme based), and various electrochemical techniques. From the survey, the electrochemical performance of the choline sensors investigated, in terms of sensitivity, selectivity and stability, is ascribed to the presence of these nanomaterials.


Biosensing Techniques , Choline/chemistry , Electrochemical Techniques , Metals , Nanocomposites , Nanotubes, Carbon , Oxides , Choline/analysis , Choline/biosynthesis , Humans , Metals/chemistry , Molecular Structure , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry
2.
Molecules ; 26(17)2021 Sep 03.
Article En | MEDLINE | ID: mdl-34500789

Reported here is the design of an electrochemical sensor for dopamine (DA) based on a screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis of iron (III) oxide nanoparticles (Fe3O4NPs). Successful synthesis of Fe3O4NP was confirmed through characterization using Fourier transform infrared (FTIR), ultraviolet-visible light (UV-VIS), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of Fe3O4/SPEEK in 0.1 M of phosphate buffer solution (PBS) containing 5 mM of potassium ferricyanide (III) solution (K3[Fe(CN)6]). An increase in peak current was observed at the nanocomposite modified electrode SPCE-Fe3O4/SPEEK) but not SPCE and SPCE-Fe3O4, which could be ascribed to the presence of SPEEK. CV and square wave voltammetry (SWV) were employed in the electroxidation of dopamine (0.1 mM DA). The detection limit (LoD) of 7.1 µM and 0.005 µA/µM sensitivity was obtained for DA at the SPCE-Fe3O4/SPEEK electrode with concentrations ranging from 5-50 µM. LOD competes well with other electrodes reported in the literature. The developed sensor demonstrated good practical applicability for DA in a DA injection with good resultant recovery percentages and RSDs values.


Benzophenones/chemistry , Dopamine/analysis , Electrochemical Techniques , Magnetite Nanoparticles/chemistry , Polymers/chemistry , Electrodes , Particle Size , Surface Properties
3.
Materials (Basel) ; 13(21)2020 Oct 31.
Article En | MEDLINE | ID: mdl-33142751

Less toxic, environmentally safe green-mediated iron (III) oxide nanoparticles (Fe3O4-NP) synthesized using Callistemon viminalis (C. viminalis) leaf (Fe3O4-NPL) and flower (Fe3O4-NPF) extracts is reported in this work for the first time. Total flavonoids and phenols present in the plant extracts were determined. Characterization of the nanoparticles was carried out using Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Malvern zeta sizer. Other properties of the nanoparticles were investigated using the thermogravimetric analyser and cyclic voltammetry. The average particle sizes obtained for Fe3O4-NPL and Fe3O4-NPF were 17.91 nm and 27.93 nm, respectively. Fe3O4-NPL exhibited an excellent electrochemical activity when compared with Fe3O4-NPF based on a stability study using cyclic voltammetry and regression value. Additionally, Fe3O4-NPF displayed excellent antimicrobial activity against Bacillus cereus, Salmonella enteritidis, and Vibrio cholerae with zones of inhibition of 13, 15, and 25 mm, respectively. Simple, cheap, and less toxic green-mediated iron (III) oxide nanoparticles synthesized from C. viminalis leaf (Fe3O4-NPL) and flower (Fe3O4-NPF) extracts hold the potential of being used to control the activity of pathogenic bacteria of health importance and as an electrochemical sensor for both biological and environmental analytes.

...