Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838155

ABSTRACT

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791501

ABSTRACT

Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve outcomes in septic patients. However, current sepsis diagnostics based on blood culture is limited by low sensitivity and specificity while current molecular approaches fail to enter clinical routine. Therefore, we developed a suppression PCR-based selective enrichment sequencing approach (SUPSETS), providing a molecular method combining multiplex suppression PCR with Nanopore sequencing to identify most common sepsis-causative pathogens and AMRs using plasma cell-free DNA. Applying only 1 mL of plasma, we targeted eight pathogens across three kingdoms and ten AMRs in a proof-of-concept study. SUPSETS was successfully tested in an experimental research study on the first ten clinical samples and revealed comparable results to clinical metagenomics while clearly outperforming blood culture. Several clinically relevant AMRs could be additionally detected. Furthermore, SUPSETS provided first pathogen and AMR-specific sequencing reads within minutes of starting sequencing, thereby potentially decreasing time-to-results to 11-13 h and suggesting diagnostic potential in sepsis.


Subject(s)
Cell-Free Nucleic Acids , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Sepsis/blood , Cell-Free Nucleic Acids/blood , Drug Resistance, Bacterial/genetics , Blood Culture/methods , DNA, Bacterial/genetics , Multiplex Polymerase Chain Reaction/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Bacteria/isolation & purification , Polymerase Chain Reaction/methods , Nanopore Sequencing/methods
3.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561804

ABSTRACT

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Humans , Female , Nucleosomes/genetics , Breast Neoplasms/genetics , DNA Methylation , Histones/genetics , Histones/metabolism , DNA/metabolism , Cell-Free Nucleic Acids/metabolism , Chromatin
4.
Microbiol Spectr ; 12(4): e0403523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38466097

ABSTRACT

With almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment. Here we applied amplicon sequencing, shotgun metagenomics, cultivation, and physiological assays to characterize the krill gut microbiota. The broad bacterial diversity (273 families, 919 genera, and 2,309 species) also included a complex potentially anaerobic sub-community. Plate-based assays with 198 isolated pure cultures revealed widespread capacities to utilize lipids (e.g., tributyrin), followed by proteins (casein) and to a lesser extent by polysaccharides (e.g., alginate and chitin). While most isolates affiliated with the genera Pseudoalteromonas and Psychrobacter, also Rubritalea spp. (Verrucomicrobia) were observed. The krill gut microbiota growing on marine broth agar plates possess 13,012 predicted hydrolyses; 15-fold more than previously predicted from a transcriptome-proteome compendium of krill. Cultivation-independent and -dependent approaches indicated members of the families Flavobacteriaceae and Pseudoalteromonadaceae to dominate the capacities for lipid/protein hydrolysis and to provide a plethora of carbohydrate-active enzymes, sulfatases, and laminarin- or porphyrin-depolymerizing hydrolases. Notably, also the potential to hydrolyze plastics such as polyethylene terephthalate and polylactatide was observed, affiliating mostly with Moraxellaceae. Overall, this study shows extensive microbial diversity in the krill gut, and suggests that the microbiota likely play a significant role in the nutrient acquisition of the krill by enriching its hydrolytic enzyme repertoire.IMPORTANCEThe Antarctic krill (Euphausia superba) is a keystone species of the Antarctic marine food web, connecting the productivity of phyto- and zooplankton with the nutrition of the higher trophic levels. Accordingly, krill significantly contributes to biomass turnover, requiring the decomposition of seasonally varying plankton-derived biopolymers. This study highlights the likely role of the krill gut microbiota in this ecosystem function by revealing the great number of diverse hydrolases that microbes contribute to the krill gut environment. The here resolved repertoire of hydrolytic enzymes could contribute to the overall nutritional resilience of krill and to the general organic matter cycling under changing environmental conditions in the Antarctic sea water. Furthermore, the krill gut microbiome could serve as a valuable resource of cold-adapted hydrolytic enzymes for diverse biotechnological applications.


Subject(s)
Euphausiacea , Humans , Animals , Euphausiacea/metabolism , Ecosystem , Seasons , Hydrolases/genetics , Hydrolases/metabolism , Biopolymers/metabolism
5.
Microbiol Resour Announc ; 13(2): e0112723, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265224

ABSTRACT

Rhodococcus erythropolis FUR100 was isolated from a mixture of soil and activated sludge. It can use furan as a sole source of carbon and energy. Its draft genome sequence may provide insight into the genetics of furan catabolism.

6.
Genome Res ; 33(10): 1649-1661, 2023 10.
Article in English | MEDLINE | ID: mdl-37699659

ABSTRACT

The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Nucleosomes , Humans , Nucleosomes/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Chromatin , Transcription Factors/metabolism , Disease Progression
7.
Environ Microbiol ; 25(11): 2163-2181, 2023 11.
Article in English | MEDLINE | ID: mdl-37321960

ABSTRACT

Mycolicibacterium gadium IBE100 and Mycobacterium paragordonae IBE200 are aerobic, chemoorganoheterotrophic bacteria isolated from activated sludge from a wastewater treatment plant. They use 2-methylpropene (isobutene, 2-MP) as the sole source of carbon and energy. Here, we postulate a degradation pathway of 2-methylpropene derived from whole genome sequencing, differential expression analysis and peptide-mass fingerprinting. Key genes identified are coding for a 4-component soluble diiron monooxygenase with epoxidase activity, an epoxide hydrolase, and a 2-hydroxyisobutyryl-CoA mutase. In both strains, involved genes are arranged in clusters of 61.0 and 58.5 kbp, respectively, which also contain the genes coding for parts of the aerobic pathway of adenosylcobalamin synthesis. This vitamin is essential for the carbon rearrangement reaction catalysed by the mutase. These findings provide data for the identification of potential 2-methylpropene degraders.


Subject(s)
Alkenes , Intramolecular Transferases , Alkenes/metabolism , Sewage , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Carbon
8.
Sci Rep ; 13(1): 4388, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928077

ABSTRACT

In order to identify biomarkers for earlier prediction of COVID-19 outcome, we collected blood samples from patients with fatal outcomes (non-survivors) and with positive clinical outcomes (survivors) at ICU admission and after seven days. COVID-19 survivors and non-survivors showed significantly different transcript levels for 93 genes in whole blood already at ICU admission as revealed by RNA-Seq. These differences became even more pronounced at day 7, resulting in 290 differentially expressed genes. Many identified genes play a role in the differentiation of hematopoietic cells. For validation, we designed an RT-qPCR assay for C-type lectin domain family 12 member A (CLEC12A) and acetylcholinesterase (ACHE), two transcripts that showed highest potential to discriminate between survivors and non-survivors at both time points. Using our combined RT-qPCR assay we examined 33 samples to accurately predict patient survival with an AUROC curve of 0.931 (95% CI = 0.814-1.000) already at ICU admission. CLEC12A and ACHE showed improved prediction of patient outcomes compared to standard clinical biomarkers including CRP and PCT in combination (AUROC = 0.403, 95% CI = 0.108-0.697) or SOFA score (AUROC = 0.701 95% CI = 0.451-0.951) at day 0. Therefore, analyzing CLEC12A and ACHE gene expression from blood may provide a promising approach for early risk stratification of severely ill COVID-19 patients.


Subject(s)
Acetylcholinesterase , COVID-19 , Lectins, C-Type , Humans , Biomarkers , COVID-19/genetics , Critical Illness , Intensive Care Units , Lectins, C-Type/genetics , Organ Dysfunction Scores , Prognosis , Receptors, Mitogen , Retrospective Studies , Risk Assessment , ROC Curve
9.
Microorganisms ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36985201

ABSTRACT

Abdominal sepsis triggers the transition of microorganisms from the gut to the peritoneum and bloodstream. Unfortunately, there is a limitation of methods and biomarkers to reliably study the emergence of pathobiomes and to monitor their respective dynamics. Three-month-old CD-1 female mice underwent cecal ligation and puncture (CLP) to induce abdominal sepsis. Serial and terminal endpoint specimens were collected for fecal, peritoneal lavage, and blood samples within 72 h. Microbial species compositions were determined by NGS of (cell-free) DNA and confirmed by microbiological cultivation. As a result, CLP induced rapid and early changes of gut microbial communities, with a transition of pathogenic species into the peritoneum and blood detected at 24 h post-CLP. NGS was able to identify pathogenic species in a time course-dependent manner in individual mice using cfDNA from as few as 30 microliters of blood. Absolute levels of cfDNA from pathogens changed rapidly during acute sepsis, demonstrating its short half-life. Pathogenic species and genera in CLP mice significantly overlapped with pathobiomes from septic patients. The study demonstrated that pathobiomes serve as reservoirs following CLP for the transition of pathogens into the bloodstream. Due to its short half-life, cfDNA can serve as a precise biomarker for pathogen identification in blood.

10.
J Mol Diagn ; 22(3): 405-418, 2020 03.
Article in English | MEDLINE | ID: mdl-32146977

ABSTRACT

The increasing incidence of bloodstream infections including sepsis is a major challenge in intensive care units worldwide. However, current diagnostics for pathogen identification mainly depend on culture- and molecular-based approaches, which are not satisfactory regarding specificity, sensitivity, and time to diagnosis. Herein, we established a complete diagnostic workflow for real-time high-throughput sequencing of cell-free DNA from plasma based on nanopore sequencing for the detection of the causative agents, which was applied to the analyses of eight samples from four septic patients and three healthy controls, and subsequently validated against standard next-generation sequencing results. By optimization of library preparation protocols for short fragments with low input amounts, a 3.5-fold increase in sequencing throughput could be achieved. With tailored bioinformatics workflows, all eight septic patient samples were found to be positive for relevant pathogens. When considering time to diagnosis, pathogens were identified within minutes after start of sequencing. Moreover, an extrapolation of real-time sequencing performance on a cohort of 239 septic patient samples revealed that more than 90% of pathogen hits would have also been detected using the optimized MinION workflow. Reliable identification of pathogens based on circulating cell-free DNA sequencing using optimized workflows and real-time nanopore-based sequencing can be accomplished within 5 to 6 hours following blood draw. Therefore, this approach might provide therapy-relevant results in a clinically critical timeframe.


Subject(s)
Bacteremia/diagnosis , High-Throughput Nucleotide Sequencing , Molecular Diagnostic Techniques , Sepsis/diagnosis , Sepsis/etiology , Aged , Case-Control Studies , Computational Biology/methods , DNA, Bacterial/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Polymerase Chain Reaction
11.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32139557

ABSTRACT

Andreprevotia sp. strain IGB-42 is a chitin-degrading bacterium isolated from the soil of an anthill. The genome contains 4.7 Mb, a G+C content of 61.31%, 4,257 predicted open reading frames, and a set of industrially interesting chitinase genes.

12.
Langenbecks Arch Surg ; 404(3): 309-325, 2019 May.
Article in English | MEDLINE | ID: mdl-30834971

ABSTRACT

PURPOSE: Despite antifungal prophylaxis following liver transplantation (LTX), patients are at risk for the development of subsequent opportunistic infections, such as an invasive fungal disease (IFD). However, culture-based diagnostic procedures are associated with relevant weaknesses. METHODS: Culture and next-generation sequencing (NGS)-based fungal findings as well as corresponding plasma levels of ß-D-glucan (BDG), galactomannan (GM), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin (IL)-2, -4, -6, -10, -17A and mid-regional proadrenomedullin (MR-proADM) were evaluated in 93 patients at 6 consecutive time points within 28 days following LTX. RESULTS: A NGS-based diagnostic approach was shown to be suitable for the early identification of fungal pathogens in patients following LTX. Moreover, MR-proADM and IL-17A in plasma proved suitable for the identification of patients with an IFD. CONCLUSION: Plasma measurements of MR-proADM and IL-17A as well as a NGS-based diagnostic approach were shown to be attractive methodologies to attenuate the weaknesses of routinely used culture-based diagnostic procedures for the determination of an IFD in patients following LTX. However, an additional confirmation within a larger multicenter trial needs to be recommended. TRIAL REGISTRATION: German Clinical Trials Register: DRKS00005480 .


Subject(s)
Invasive Fungal Infections/diagnosis , Liver Transplantation , Opportunistic Infections/diagnosis , Adult , Biomarkers/blood , DNA, Fungal/blood , Female , Germany , Humans , Intensive Care Units , Invasive Fungal Infections/microbiology , Male , Middle Aged , Opportunistic Infections/microbiology , Organ Dysfunction Scores , Risk Factors
13.
Crit Care Med ; 47(5): e394-e402, 2019 05.
Article in English | MEDLINE | ID: mdl-30720537

ABSTRACT

OBJECTIVES: Culture-based diagnostics represent the standard of care in septic patients, but are highly insensitive and in many cases unspecific. We recently demonstrated the general feasibility of next-generation sequencing-based diagnostics using free circulating nucleic acids (cell-free DNA) in plasma samples of septic patients. Within the presented investigation, higher performance of next-generation sequencing-based diagnostics was validated by comparison to matched blood cultures. DESIGN: A secondary analysis of a prospective, observational, single-center study. SETTING: Surgical ICU of a university hospital and research laboratory. PATIENTS: Fifty patients with septic shock, 20 uninfected patients with elective surgery as control cohort. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: From 256 plasma samples of 48 septic patients at up to seven consecutive time points within the 28-day observation period, cell-free DNA was isolated and analyzed by next-generation sequencing and relevance scoring. In parallel, results from culture-based diagnostics (e.g., blood culture) were obtained. Plausibility of blood culture and next-generation sequencing results as well as adequacy of antibiotic therapy was evaluated by an independent expert panel. In contrast to blood culture with a positivity rate of 33% at sepsis onset, the positivity rate for next-generation sequencing-based pathogen identification was 72%. Over the whole study period, blood culture positivity was 11%, and next-generation sequencing positivity was 71%. Ninety-six percent of positive next-generation sequencing results for acute sepsis time points were plausible and would have led to a change to a more adequate therapy in 53% of cases as assessed by the expert evaluation. CONCLUSIONS: Our results show that next-generation sequencing-based analyses of bloodstream infections provide a valuable diagnostic platform for the identification of clinically relevant pathogens with higher sensitivity and specificity than blood culture, indicating that patients might benefit from a more appropriate therapy based on next-generation sequencing-based diagnosis.


Subject(s)
DNA, Bacterial/blood , High-Throughput Nucleotide Sequencing , Shock, Septic/diagnosis , Shock, Septic/microbiology , Biomarkers/blood , Blood Culture , Drug Resistance, Bacterial/genetics , Female , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Sensitivity and Specificity , Shock, Septic/blood
14.
Biotechnol Biofuels ; 11: 255, 2018.
Article in English | MEDLINE | ID: mdl-30250507

ABSTRACT

BACKGROUND: Biogas production is an attractive technology for a sustainable generation of renewable energy. Although the microbial community is fundamental for such production, the process control is still limited to technological and chemical parameters. Currently, most of the efforts on microbial management system (MiMaS) are focused on process-specific marker species and community dynamics, but a practical implementation is in its infancy. The high number of unknown and uncharacterized microorganisms in general is one of the reasons hindering further advancements. RESULTS: A Biogas Metagenomics Hybrid Assembly (BioMETHA) database, derived from microbiomes of biogas plants, was generated using a dedicated assembly strategy for different metagenomic datasets. Long reads from nanopore sequencing (MinION) were combined with short, more accurate second-generation sequencing reads (Illumina). The hybrid assembly resulted in 231 genomic bins each representing a taxonomic unit with an average completeness of 47%. Functional annotation identified 13,190 non-redundant genes covering roughly 207 k coding sequences. Mapping rates of metagenomics DNA derived from diverse biogas plants and laboratory reactors increased up to 73%. In addition, an EC (enzyme commission) reference sequence collection (ERSC) was generated whose genes are crucial for biogas-related processes, consisting of 235 unique EC numbers organized in 52 metabolic modules. Mapping rates of metatranscriptomic data to this ERSC revealed coverages of up to 93%. Process parameters and imbalances of laboratory reactors could be reconstructed by evaluating abundance of biogas-specific metabolic modules using metatranscriptomic data derived from various fermenter systems. CONCLUSION: This newly established metagenomic hybrid assembly in combination with an EC reference sequence collection might help to shed light on the microbial dark matter of biogas plants by contributing to the development of a reference for biogas plant microbiome-specific gene sequences. Considering a biogas microbiome as a complex meta-organism expressing a meta-transcriptome, the approach established here could lay the foundation for a function-based microbial management system.

15.
Bioresour Technol ; 247: 347-356, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28954247

ABSTRACT

This study aimed to uncover microbial dynamics and transcriptional adaptations during mesophilic AD of maize silage and slurry. While one digester performed under optimal conditions, the investigations also evaluated the microbiome during a temperature drop mediated process failure accompanied by acidification and how it contributed to a process recovery. Composition and pathway activities were analyzed by whole genome shotgun (WGS) and metatranscriptome sequencing, respectively. A biodiversity of 112 species was observed with noticeable shifts over process time. Although four distinct groups of microbes could be identified with a correlating versatility according to substrate and to process disturbance, also tremendous effects on gene expression were monitored especially of the archaeal methane metabolism. Particularly, the expression of acetogenotrophic methanogenesis related genes was identified to be relevant for process regeneration.


Subject(s)
Bioreactors , Methane , Acclimatization , Anaerobiosis , Archaea , Biofuels , Microbiota
16.
Int J Mol Sci ; 18(8)2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28820494

ABSTRACT

Fungi are of increasing importance in sepsis. However, culture-based diagnostic procedures are associated with relevant weaknesses. Therefore, culture- and next-generation sequencing (NGS)-based fungal findings as well as corresponding plasma levels of ß-d-glucan, interferon gamma (INF-γ), tumor necrosis factor alpha (TNF-α), interleukin (IL)-2, -4, -6, -10, -17A, and mid-regional proadrenomedullin (MR-proADM) were evaluated in 50 septic patients at six consecutive time points within 28 days after sepsis onset. Furthermore, immune-response patterns during infections with Candida spp. were studied in a reconstituted human epithelium model. In total, 22% (n = 11) of patients suffered from a fungal infection. An NGS-based diagnostic approach appeared to be suitable for the identification of fungal pathogens in patients suffering from fungemia as well as in patients with negative blood cultures. Moreover, MR-proADM and IL-17A in plasma proved suitable for the identification of patients with a fungal infection. Using RNA-seq., adrenomedullin (ADM) was shown to be a target gene which is upregulated early after an epithelial infection with Candida spp. In summary, an NGS-based diagnostic approach was able to close the diagnostic gap of routinely used culture-based diagnostic procedures, which can be further facilitated by plasmatic measurements of MR-proADM and IL-17A. In addition, ADM was identified as an early target gene in response to epithelial infections with Candida spp.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Immune System/immunology , Mycoses/immunology , Shock, Septic/immunology , Adrenomedullin/blood , Adrenomedullin/immunology , Aged , Biomarkers/blood , Candida/immunology , Candida/physiology , Female , Host-Pathogen Interactions/immunology , Humans , Interleukin-17/blood , Interleukin-17/immunology , Male , Middle Aged , Mycoses/diagnosis , Mycoses/microbiology , Protein Precursors/blood , Protein Precursors/immunology , Shock, Septic/blood , Shock, Septic/microbiology , Time Factors
17.
Cell ; 170(2): 298-311.e20, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28708998

ABSTRACT

The yeast Hsp70 chaperone Ssb interacts with ribosomes and nascent polypeptides to assist protein folding. To reveal its working principle, we determined the nascent chain-binding pattern of Ssb at near-residue resolution by in vivo selective ribosome profiling. Ssb associates broadly with cytosolic, nuclear, and hitherto unknown substrate classes of mitochondrial and endoplasmic reticulum (ER) nascent proteins, supporting its general chaperone function. Ssb engages most substrates by multiple binding-release cycles to a degenerate sequence enriched in positively charged and aromatic amino acids. Timely association with this motif upon emergence at the ribosomal tunnel exit requires ribosome-associated complex (RAC) but not nascent polypeptide-associated complex (NAC). Ribosome footprint densities along orfs reveal faster translation at times of Ssb binding, mainly imposed by biases in mRNA secondary structure, codon usage, and Ssb action. Ssb thus employs substrate-tailored dynamic nascent chain associations to coordinate co-translational protein folding, facilitate accelerated translation, and support membrane targeting of organellar proteins.


Subject(s)
Adenosine Triphosphatases/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Folding , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/chemistry , Amino Acid Motifs , HSP70 Heat-Shock Proteins/chemistry , Models, Molecular , Protein Biosynthesis , Ribosomes/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/chemistry
18.
Genome Announc ; 5(28)2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28705965

ABSTRACT

The three Actinobacteria strains Streptomyces platensis DSM 40041, Pseudonocardia autotrophica DSM 535, and Streptomyces fradiae DSM 40063 were described to selectively oxyfunctionalize several drugs. Here, we present their draft genomes to unravel their gene sets encoding promising cytochrome P450 monooxygenases associated with the generation of drug metabolites.

19.
Genome Announc ; 5(5)2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28153904

ABSTRACT

Pseudonocardia autotrophica strain DSM 43083 is a filamentous actinobacterium and was described to degrade or modify lignin. Here, we present its draft genome sequence, with a size of 5.8 Mb, to unravel the gene set coding for promising monooxygenases, dioxygenases, and DyP-type peroxidases associated with aromatic metabolism and lignin modification.

20.
BMC Genomics ; 18(1): 158, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28196481

ABSTRACT

BACKGROUND: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. RESULTS: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). CONCLUSIONS: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Software , Chromatin/metabolism , Cluster Analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...