Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Med Eng Phys ; 130: 104211, 2024 08.
Article in English | MEDLINE | ID: mdl-39160019

ABSTRACT

BACKGROUND AND OBJECTIVE: Imaging methodologies such as, computed tomography (CT) aid in three-dimensional (3D) reconstruction of patient-specific aneurysms. The radiological data is useful in understanding their location, shape, size, and disease progression. However, there are serious impediments in discerning the blood vessel wall thickness due to limitations in the current imaging modalities. This further restricts the ability to perform high-fidelity fluid structure interaction (FSI) studies for an accurate assessment of rupture risk. FSI studies would require the arterial wall mesh to be generated to determine realistic maximum allowable wall stresses by performing coupled calculations for the hemodynamic forces with the arterial walls. METHODS: In the present study, a novel methodology is developed to geometrically model variable vessel wall thickness for the lumen isosurface extracted from CT scan slices of patient-specific aneurysms based on clinical and histopathological inputs. FSI simulations are carried out with the reconstructed models to assess the importance of near realistic wall thickness model on rupture risk predictions. RESULTS: During surgery, clinicians often observe translucent vessel walls, indicating the presence of thin regions. The need to generate variable vessel wall thickness model, that embodies the wall thickness gradation, is closer to such clinical observations. Hence, corresponding FSI simulations performed can improve clinical outcomes. Considerable differences in the magnitude of instantaneous wall shear stresses and von Mises stresses in the walls of the aneurysm was observed between a uniform wall thickness and a variable wall thickness model. CONCLUSION: In the present study, a variable vessel wall thickness generation algorithm is implemented. It was shown that, a realistic wall thickness modeling is necessary for an accurate prediction of the shear stresses on the wall as well as von Mises stresses in the wall. FSI simulations are performed to demonstrate the utility of variable wall thickness modeling.


Subject(s)
Intracranial Aneurysm , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/physiopathology , Humans , Tomography, X-Ray Computed , Patient-Specific Modeling , Arteries/diagnostic imaging , Arteries/physiopathology , Arteries/pathology , Hemodynamics , Stress, Mechanical , Imaging, Three-Dimensional , Models, Cardiovascular
2.
Article in English | MEDLINE | ID: mdl-37968912

ABSTRACT

An aneurysm is a disease condition, which is due to the pathological weakening of an arterial wall. These aneurysms are often found in various branch points and bifurcations of an artery in the cerebral circulation. Most aneurysms come to medical attention, either due to brain hemorrhages caused by rupture or found unruptured. To consider surgically invasive treatment modalities, clinicians need scientific methods such as, hemodynamic analysis to assess rupture risk. The arterial wall loses its structural integrity when wall shear stress (WSS) and other hemodynamic parameters exceed a certain threshold. In the present study, numerical simulations are carried out for unruptured middle cerebral artery (MCA) aneurysms. Three distinct representative sizes are chosen from a larger patient pool of 26 MCA aneurysms. Logically, these aneurysms represent three growth stages of any patient with similar anatomical structure. Simulations are performed to compare the three growth phases (with different aspect ratios) of an aneurysm and correlate their hemodynamic parameters. Simulations with patient specific boundary conditions reveal that, aneurysms with a higher aspect ratio (AR) correspond to an attendant decrease in both time-averaged wall shear stress (TAWSS) and spatial wall shear stress gradients (WSSG). Smaller MCAs were observed to have higher positive wall shear stress divergence (WSSD), exemplifying the tensile nature of arterial wall stretching. Present study identifies positive wall shear stress divergence (PWSSD) to be a potential biomarker for evaluating the growth of an aneurysm.

SELECTION OF CITATIONS
SEARCH DETAIL