Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Glia ; 72(7): 1340-1355, 2024 Jul.
Article En | MEDLINE | ID: mdl-38597386

Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aß accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.


Alzheimer Disease , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Transgenic , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Inflammation/pathology , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , Disease Models, Animal , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Male , Female , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Brain/pathology , Brain/metabolism , Amyloid beta-Peptides/metabolism , Cytokines/metabolism
2.
J Neurochem ; 167(1): 90-103, 2023 10.
Article En | MEDLINE | ID: mdl-37702203

During subarachnoid haemorrhage, a blood clot forms in the subarachnoid space releasing extracellular haemoglobin (Hb), which causes oxidative damage and cell death in surrounding tissues. High rates of disability and cognitive decline in SAH survivors are attributed to loss of neurons and functional connections during secondary brain injury. Haptoglobin sequesters Hb for clearance, but this scavenging system is overwhelmed after a haemorrhage. Whilst exogenous haptoglobin application can attenuate cytotoxicity of Hb in vitro and in vivo, the functional effects of sub-lethal Hb concentrations on surviving neurons and whether cellular function can be protected with haptoglobin treatment remain unclear. Here we use cultured neurons to investigate neuronal health and function across a range of Hb concentrations to establish the thresholds for cellular damage and investigate synaptic function. Hb impairs ATP concentrations and cytoskeletal structure. At clinically relevant but sub-lethal Hb concentrations, we find that synaptic AMPAR-driven currents are reduced, accompanied by a reduction in GluA1 subunit expression. Haptoglobin co-application can prevent these deficits by scavenging free Hb to reduce it to sub-threshold concentrations and does not need to be present at stoichiometric amounts to achieve efficacy. Haptoglobin itself does not impair measures of neuronal health and function at any concentration tested. Our data highlight a role for Hb in modifying synaptic function in surviving neurons, which may link to impaired cognition or plasticity after SAH and support the development of haptoglobin as a therapy for subarachnoid haemorrhage.


Brain Injuries , Subarachnoid Hemorrhage , Humans , Haptoglobins/pharmacology , Haptoglobins/therapeutic use , Subarachnoid Hemorrhage/metabolism , Hemoglobins/pharmacology , Hemoglobins/therapeutic use , Neurons/metabolism , Brain Injuries/metabolism
3.
Front Neurosci ; 17: 1196007, 2023.
Article En | MEDLINE | ID: mdl-37342467

In Alzheimer's disease, tau pathology is thought to spread via a prion-like manner along connected neuronal networks. For this to occur, the usually cytosolic tau protein must be secreted via an unconventional mechanism prior to uptake into the connected neuron. While secretion of healthy and pathological tau has been documented, it remains under-investigated whether this occurs via overlapping or distinct processes. Here, we established a sensitive bioluminescence-based assay to assess mechanisms underlying the secretion of pseudohyperphosphorylated and wild-type tau in cultured murine hippocampal neurons. We found that under basal conditions, both wild-type and mutant tau are secreted, with mutant tau being more robustly secreted. Pharmacological stimulation of neuronal activity led to a modest increase of wild-type and mutant tau secretion, whereas inhibition of activity had no effect. Interestingly, inhibition of heparin sulfate proteoglycan (HSPG) biosynthesis drastically decreased secretion of both wild-type and mutant tau without affecting cell viability. This shows that native and pathological tau share release mechanisms; both activity-dependent and non-activity-dependent secretion of tau is facilitated by HSPGs.

4.
PLoS One ; 18(1): e0262792, 2023.
Article En | MEDLINE | ID: mdl-36701399

Tau becomes abnormally hyper-phosphorylated and aggregated in tauopathies like Alzheimers disease (AD). As age is the greatest risk factor for developing AD, it is important to understand how tau protein itself, and the pathways implicated in its turnover, change during aging. We investigated age-related changes in total and phosphorylated tau in brain samples from two cohorts of cognitively normal individuals spanning 19-74 years, without overt neurodegeneration. One cohort utilised resected tissue and the other used post-mortem tissue. Total soluble tau levels declined with age in both cohorts. Phosphorylated tau was undetectable in the post-mortem tissue but was clearly evident in the resected tissue and did not undergo significant age-related change. To ascertain if the decline in soluble tau was correlated with age-related changes in autophagy, three markers of autophagy were tested but only two appeared to increase with age and the third was unchanged. This implies that in individuals who do not develop neurodegeneration, there is an age-related reduction in soluble tau which could potentially be due to age-related changes in autophagy. Thus, to explore how an age-related increase in autophagy might influence tau-mediated dysfunctions in vivo, autophagy was enhanced in a Drosophila model and all age-related tau phenotypes were significantly ameliorated. These data shed light on age-related physiological changes in proteins implicated in AD and highlights the need to study pathways that may be responsible for these changes. It also demonstrates the therapeutic potential of interventions that upregulate turnover of aggregate-prone proteins during aging.


Alzheimer Disease , Tauopathies , Animals , Humans , Young Adult , Adult , Middle Aged , Aged , tau Proteins/metabolism , Tauopathies/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Drosophila/metabolism , Autophagy/genetics , Phosphorylation
5.
Cereb Cortex ; 33(4): 1263-1276, 2023 02 07.
Article En | MEDLINE | ID: mdl-35368053

Alzheimer's disease is linked to increased levels of amyloid beta (Aß) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aß. Using an optical readout method in cultured hippocampal neurons, we show that acute Aß42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aß transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aß is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aß-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.


Amyloid beta-Peptides , Synaptic Vesicles , Synaptic Vesicles/physiology , Amyloid beta-Peptides/metabolism , Presynaptic Terminals/physiology , Neurons/metabolism , Hippocampus/physiology , Synaptic Transmission/physiology
6.
Front Hum Neurosci ; 16: 866434, 2022.
Article En | MEDLINE | ID: mdl-35572001

Cognitive dysfunction in Alzheimer's disease (AD) is caused by disturbances in neuronal circuits of the brain underpinned by synapse loss, neuronal dysfunction and neuronal death. Amyloid beta and tau protein cause these pathological changes and enhance neuroinflammation, which in turn modifies disease progression and severity. Vagal nerve stimulation (VNS), via activation of the locus coeruleus (LC), results in the release of catecholamines in the hippocampus and neocortex, which can enhance synaptic plasticity and reduce inflammatory signalling. Vagal nerve stimulation has shown promise to enhance cognitive ability in animal models. Research in rodents has shown that VNS can have positive effects on basal synaptic function and synaptic plasticity, tune inflammatory signalling, and limit the accumulation of amyloid plaques. Research in humans with invasive and non-invasive VNS devices has shown promise for the modulation of cognition. However, the direct stimulation of the vagus nerve afforded with the invasive procedure carries surgical risks. In contrast, non-invasive VNS has the potential to be a broadly available therapy to manage cognitive symptoms in early AD, however, the magnitude and specificity of its effects remains to be elucidated, and the non-inferiority of the effects of non-invasive VNS as compared with invasive VNS still needs to be established. Ongoing clinical trials with healthy individuals and patients with early AD will provide valuable information to clarify the potential benefits of non-invasive VNS in cognition and AD. Whether invasive or non-invasive VNS can produce a significant improvement on memory function and whether its effects can modify the progression of AD will require further investigation.

7.
Acta Neuropathol Commun ; 10(1): 45, 2022 04 04.
Article En | MEDLINE | ID: mdl-35379353

Amyloid-beta (Aß) and tau protein are both involved in the pathogenesis of Alzheimer's disease. Aß produces synaptic deficits in wild-type mice that are not seen in Mapt-/- mice, suggesting that tau protein is required for these effects of Aß. However, whether some synapses are more selectively affected and what factors may determine synaptic vulnerability to Aß are poorly understood. Here we first observed that burst timing-dependent long-term potentiation (b-LTP) in hippocampal CA3-CA1 synapses, which requires GluN2B subunit-containing NMDA receptors (NMDARs), was inhibited by human Aß1-42 (hAß) in wild-type (WT) mice, but not in tau-knockout (Mapt-/-) mice. We then tested whether NMDAR currents were affected by hAß; we found that hAß reduced the postsynaptic NMDAR current in WT mice but not in Mapt-/- mice, while the NMDAR current was reduced to a similar extent by the GluN2B-selective NMDAR antagonist Ro 25-6981. To further investigate a possible difference in GluN2B-containing NMDARs in Mapt-/- mice, we used optogenetics to compare NMDAR/AMPAR ratio of EPSCs in CA1 synapses with input from left vs right CA3. It was previously reported in WT mice that hippocampal synapses in CA1 that receive input from the left CA3 display a higher NMDAR charge transfer and a higher Ro-sensitivity than synapses in CA1 that receive input from the right CA3. Here we observed the same pattern in Mapt-/- mice, thus differential NMDAR subunit expression does not explain the difference in hAß effect on LTP. Finally, we asked whether synapses with left vs right CA3 input are differentially affected by hAß in WT mice. We found that NMDAR current in synapses with input from the left CA3 were reduced while synapses with input from the right CA3 were unaffected by acute hAß exposure. These results suggest that hippocampal CA3-CA1 synapses with presynaptic axon originating in the left CA3 are selectively vulnerable to Aß and that a genetic knock out of tau protein protects them from Aß synaptotoxicity.


Alzheimer Disease , Hippocampus , Synapses , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , CA1 Region, Hippocampal , CA3 Region, Hippocampal , Hippocampus/metabolism , Long-Term Potentiation , Mice , Synapses/metabolism
8.
Acta Neuropathol Commun ; 9(1): 18, 2021 01 28.
Article En | MEDLINE | ID: mdl-33509301

BACKGROUND: Multimerization is a key process in prion-like disorders such as Alzheimer's disease (AD), since it is a requirement for self-templating tau and beta-amyloid amyloidogenesis. AT8-immunohistochemistry for hyperphosphorylated tau is currently used for the diagnosis and staging of tau pathology. Given that tau-tau interactions can occur in the absence of hyperphosphorylation or other post-translational modifications (PTMs), the direct visualization of tau multimerization could uncover early pathological tau multimers. METHODS: Here, we used bimolecular fluorescent complementation, rapamycin-dependent FKBP/FRB-tau interaction and transmission electron microscopy to prove the in vitro specificity of tau-proximity ligation assay (tau-PLA). We then analyzed MAPT KO and P301S transgenic mice, and human hippocampus and temporal isocortex of all Braak stages with tau-PLA and compared it with immunohistochemistry for the diagnostic antibody AT8, the early phosphorylation-dependent AT180, and the conformational-dependent antibody MC1. Finally, we performed proteinase-K treatment to infer the content of amyloidogenic beta-sheet fold. RESULTS: Our novel tau-proximity ligation assay (tau-PLA) directly visualized tau-tau interactions in situ, and exclusively recognized tau multimers but not monomers. It elicited no signal in MAPT KO mouse brains, but extensively labelled P301S transgenic mice and AD brain. Two groups of structures were detected, a previously unreported widespread small-sized diffuse pathology and large, neurofibrillary-like lesions. Tau-PLA-labelled diffuse pathology appeared from the earliest Braak stages, mostly unaccompanied by tangle-like tau-immunohistochemistry, being significantly more sensitive than any small-sized dot-/thread-like pathology labelled by AT180-, AT8- and MC1-immunohistochemistry in most regions quantified at stages 0-II. Tau-PLA-labelled diffuse pathology was extremely sensitive to Proteinase-K, in contrast to large lesions. CONCLUSIONS: Tau-PLA is the first method to directly visualize tau multimers both in vitro and in situ with high specificity. We find that tau multimerization appears extensively from the earliest presymptomatic Braak stages as a previously unreported type of diffuse pathology. Importantly, in our study multimerization is the earliest detectable molecular event of AD tau pathology. Our findings open a new window to the study of early tau pathology, with potential implications in early diagnosis and the design of therapeutic strategies.


Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , tau Proteins/metabolism , Alzheimer Disease/genetics , Animals , Asymptomatic Diseases , Humans , Mice , Mice, Knockout , Mice, Transgenic , Neurofibrillary Tangles/pathology , Protein Multimerization , tau Proteins/genetics
9.
Nucleic Acids Res ; 48(17): 9822-9839, 2020 09 25.
Article En | MEDLINE | ID: mdl-32870280

RNA G-quadruplexes (G4s) are secondary structures proposed to function as regulators of post-transcriptional mRNA localisation and translation. G4s within some neuronal mRNAs are known to control distal localisation and local translation, contributing to distinct local proteomes that facilitate the synaptic remodelling attributed to normal cellular function. In this study, we characterise the G4 formation of a (GGN)13 repeat found within the 5' UTR of the potassium 2-pore domain leak channel Task3 mRNA. Biophysical analyses show that this (GGN)13 repeat forms a parallel G4 in vitro exhibiting the stereotypical potassium specificity of G4s, remaining thermostable under physiological ionic conditions. Through mouse brain tissue G4-RNA immunoprecipitation, we further confirm that Task3 mRNA forms a G4 structure in vivo. The G4 is inhibitory to translation of Task3 in vitro and is overcome through activity of a G4-specific helicase DHX36, increasing K+ leak currents and membrane hyperpolarisation in HEK293 cells. Further, we observe that this G4 is fundamental to ensuring delivery of Task3 mRNA to distal primary cortical neurites. It has been shown that aberrant Task3 expression correlates with neuronal dysfunction, we therefore posit that this G4 is important in regulated local expression of Task3 leak channels that maintain K+ leak within neurons.


G-Quadruplexes , Neurons/metabolism , Potassium Channels/genetics , RNA, Messenger/chemistry , 5' Untranslated Regions , Animals , Brain/cytology , Brain/metabolism , Cells, Cultured , HEK293 Cells , Humans , Membrane Potentials , Mice , Mice, Inbred C57BL , Neurons/physiology , Potassium Channels/chemistry , Potassium Channels/metabolism , Protein Transport , RNA, Messenger/genetics
10.
Cereb Cortex ; 30(7): 4246-4256, 2020 06 01.
Article En | MEDLINE | ID: mdl-32191258

The molecular processes underlying the aging-related decline in cognitive performance and memory observed in humans are poorly understood. Studies in rodents have shown a decrease in N-methyl-D-aspartate receptors (NMDARs) that contain the GluN2B subunit in aging synapses, and this decrease is correlated with impaired memory functions. However, the age-dependent contribution of GluN2B-containing receptors to synaptic transmission in human cortical synapses has not been previously studied. We investigated the synaptic contribution of GluN2A and GluN2B-containing NMDARs in adult human neurons using fresh nonpathological temporal cortical tissue resected during neurosurgical procedures. The tissue we obtained fulfilled quality criteria by the absence of inflammation markers and proteomic degradation. We show an age-dependent decline in the NMDA/AMPA receptor ratio in adult human temporal cortical synapses. We demonstrate that GluN2B-containing NMDA receptors contribute to synaptic responses in the adult human brain with a reduced contribution in older individuals. With previous evidence demonstrating the critical role of synaptic GluN2B in regulating synaptic strength and memory storage in mice, this progressive reduction of GluN2B in the human brain during aging may underlie a molecular mechanism in the age-related decline in cognitive abilities and memory observed in humans.


Aging/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Temporal Lobe/metabolism , Adult , Aged , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Female , Humans , Male , Middle Aged , Receptors, AMPA/metabolism , Temporal Lobe/cytology , Young Adult
11.
Bio Protoc ; 10(16): e3718, 2020 Aug 20.
Article En | MEDLINE | ID: mdl-33659382

The deposition of misfolded, aggregated tau protein is a hallmark of several neurodegenerative diseases, collectively termed "tauopathies". Tau pathology spreads throughout the brain along connected pathways in a prion-like manner. The process of tau pathology propagation across circuits is a focus of intense research and has been investigated in vivo in human post-mortem brain and in mouse models of the diseases, in vitro in diverse cellular systems including primary neurons, and in cell free assays using purified recombinant tau protein. Here we describe a protocol that takes advantage of a minimalistic neuronal circuit arrayed within a microfluidic device to follow the propagation of tau misfolding from a presynaptic to a postsynaptic neuron. This assay allows high-resolution imaging as well as individual manipulation of the releasing and receiving neuron, and is therefore beneficial for investigating the propagation of tau and other misfolded proteins in vitro.

12.
J Neurosci ; 39(48): 9623-9632, 2019 11 27.
Article En | MEDLINE | ID: mdl-31658988

Neurofibrillary tangles, formed of misfolded, hyperphosphorylated tau protein, are a pathological hallmark of several neurodegenerations, including Alzheimer's disease. Tau pathology spreads between neurons and propagates misfolding in a prion-like manner throughout connected neuronal circuits. Tauopathy is accompanied by significant neuronal death, but the relationships between initial tau misfolding, propagation across connected neurons and cytotoxicity remain unclear. In particular the immediate functional consequence of tau misfolding for the individual neuron is not well understood. Here, using microfluidic devices to recreate discretely organized neuronal connections, we show that the spread and propagation of misfolded tau between individual murine neurons is rapid and efficient; it occurs within days. The neurons containing and propagating tau pathology display selective axonal transport deficits but remain viable and electrically competent. Therefore, we demonstrate that seed-competent misfolded tau species do not acutely cause cell death, but instead initiate discrete cellular dysfunctions.SIGNIFICANCE STATEMENT Public awareness of progressive neurodegenerations such as dementias associated with aging or repetitive head trauma is rising. Protein misfolding underlies many neurodegenerative diseases including tauopathies, where the misfolded tau protein propagates pathology through connected brain circuits in a prion-like manner. Clinically, these diseases progress over the course of years. Here we show that the underlying protein misfolding propagates rapidly between individual neurons. Presence of misfolded tau is not directly cytotoxic to the neuron; the cells remain viable with limited deficits. This suggests that neurons with tau pathology could be rescued with a therapeutic disease modifier and highlights an under-appreciated time window for such therapeutic intervention.


Hippocampus/metabolism , Neurons/metabolism , Protein Folding , tau Proteins/metabolism , Animals , Cells, Cultured , Hippocampus/pathology , Humans , Mice , Mice, Inbred C57BL , Neurons/pathology , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology
13.
Mol Brain ; 12(1): 64, 2019 07 04.
Article En | MEDLINE | ID: mdl-31272478

Glutamate receptors of the N-methyl-D-aspartate (NMDA) family are coincident detectors of pre- and postsynaptic activity, allowing Ca2+ influx into neurons. These properties are central to neurological disease mechanisms and are proposed to be the basis of associative learning and memory. In addition to the well-characterised canonical GluN2A NMDAR isoform, large-scale open reading frames in human tissues had suggested the expression of a primate-specific short GluN2A isoform referred to as GluN2A-S. Here, we confirm the expression of both GluN2A transcripts in human and primate but not rodent brain tissue, and show that they are translated to two corresponding GluN2A proteins present in human brain. Furthermore, we demonstrate that recombinant GluN2A-S co-assembles with the obligatory NMDAR subunit GluN1 to form functional NMDA receptors. These findings suggest a more complex NMDAR repertoire in human brain than previously thought.


Brain/metabolism , Primates/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Adult , Aged , Animals , Base Sequence , Female , HEK293 Cells , Humans , Male , Mice , Middle Aged , Protein Isoforms/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Species Specificity , Young Adult
14.
Acta Neuropathol Commun ; 7(1): 25, 2019 02 22.
Article En | MEDLINE | ID: mdl-30795807

The synaptic changes underlying the onset of cognitive impairment in Alzheimer's disease (AD) are poorly understood. In contrast to the well documented inhibition of long-term potentiation (LTP) in CA3-CA1 synapses by acute Aß application in adult neurons from rodents, young amyloid precursor protein (APP) transgenic mouse models often, surprisingly, show normal LTP. This suggests that there may be important differences between mature-onset and developmental-onset APP expression/ Aß accumulation and the ensuing synaptic and behavioural phenotype. Here, in agreement with previous studies, we observed that developmental expression of APPSw,Ind (3-4 month old mice from line 102, PLoS Med 2:e355, 2005), resulted in reduced basal synaptic transmission in CA3-CA1 synapses, normal LTP, impaired spatial working memory, but normal spatial reference memory. To analyse early Aß-mediated synaptic dysfunction and cognitive impairment in a more mature brain, we used controllable mature-onset APPSw,Ind expression in line 102 mice. Within 3 weeks of mature-onset APPSw,Ind expression and Aß accumulation, we detected the first synaptic dysfunction: an impairment of LTP in hippocampal CA3-CA1 synapses. Cognitively, at this time point, we observed a deficit in short-term memory. A reduction in basal synaptic strength and deficit in long-term associative spatial memory were only evident following 12 weeks of APPSw,Ind expression. Importantly, the plasticity impairment observed after 3 weeks of mature-onset APP expression is reversible. Together, these findings demonstrate important differences between developmental and mature-onset APP expression. Further research targeted at this early stage of synaptic dysfunction could help identify mechanisms to treat cognitive impairment in mild cognitive impairment (MCI) and early AD.


Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/biosynthesis , Cognitive Dysfunction/metabolism , Disease Models, Animal , Synapses/metabolism , Age Factors , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Brain/metabolism , Cognitive Dysfunction/genetics , Female , Male , Maze Learning/physiology , Mice , Mice, Transgenic , Organ Culture Techniques , Synapses/genetics
15.
Front Neurosci ; 11: 201, 2017.
Article En | MEDLINE | ID: mdl-28484365

Microtubule associated protein tau (MAPT) is involved in the pathogenesis of Alzheimer's disease and many forms of frontotemporal dementia (FTD). We recently reported that Aß-mediated inhibition of hippocampal long-term potentiation (LTP) in mice requires tau. Here, we asked whether expression of human MAPT can restore Aß-mediated inhibition on a mouse Tau-/- background and whether human tau with an FTD-causing mutation (N296H) can interfere with Aß-mediated inhibition of LTP. We used transgenic mouse lines each expressing the full human MAPT locus using bacterial artificial chromosome technology. These lines expressed all six human tau protein isoforms on a Tau-/- background. We found that the human wild-type MAPT H1 locus was able to restore Aß42-mediated impairment of LTP. In contrast, Aß42 did not reduce LTP in slices in two independently generated transgenic lines expressing tau protein with the mutation N296H associated with frontotemporal dementia (FTD). Basal phosphorylation of tau measured as the ratio of AT8/Tau5 immunoreactivity was significantly reduced in N296H mutant hippocampal slices. Our data show that human MAPT is able to restore Aß42-mediated inhibition of LTP in Tau-/- mice. These results provide further evidence that tau protein is central to Aß-induced LTP impairment and provide a valuable tool for further analysis of the links between Aß, human tau and impairment of synaptic function.

16.
Elife ; 52016 08 18.
Article En | MEDLINE | ID: mdl-27536875

Most cortical neurons fire regularly when excited by a constant stimulus. In contrast, irregular-spiking (IS) interneurons are remarkable for the intrinsic variability of their spike timing, which can synchronize amongst IS cells via specific gap junctions. Here, we have studied the biophysical mechanisms of this irregular spiking in mice, and how IS cells fire in the context of synchronous network oscillations. Using patch-clamp recordings, artificial dynamic conductance injection, pharmacological analysis and computational modeling, we show that spike time irregularity is generated by a nonlinear dynamical interaction of voltage-dependent sodium and fast-inactivating potassium channels just below spike threshold, amplifying channel noise. This active irregularity may help IS cells synchronize with each other at gamma range frequencies, while resisting synchronization to lower input frequencies.


Action Potentials , Cerebral Cortex/cytology , Interneurons/physiology , Models, Neurological , Animals , Biophysical Phenomena , Computer Simulation , Mice , Nonlinear Dynamics , Patch-Clamp Techniques , Potassium Channels/metabolism , Voltage-Gated Sodium Channels/metabolism
17.
Expert Opin Drug Discov ; 11(4): 355-67, 2016.
Article En | MEDLINE | ID: mdl-26878555

INTRODUCTION: Although many disease models exist for neurodegenerative disease, the translation of basic research findings to clinic is very limited. Studies using freshly resected human brain tissue, commonly discarded from neurosurgical procedures, should complement on-going work using stem cell-derived human neurons and glia thus increasing the likelihood of success in clinical trials. AREAS COVERED: Herein, the authors discuss key issues in the lack of translation from basic research to clinic. They also review the evidence that human neurons, both freshly resected brain tissue and stem cell-derived neurons, such as induced pluripotent stem cells (iPSCs), can be used for analysis of physiological and molecular mechanisms in health and disease. Furthermore, the authors compare and contrast studies using live human brain tissue and studies using induced human stem cell-derived neuron models. Using an example from the area of neurodegeneration, the authors suggest that replicating elements of research findings from animals and stem cell models in resected human brain tissue would strengthen our understanding of disease mechanisms and the therapeutic strategies and aid translation. EXPERT OPINION: The use of human brain tissue alongside iPSC-derived neural models can validate molecular mechanisms identified in rodent disease models and strengthen their relevance to humans. If drug target engagement and mechanism of cellular action can be validated in human brain tissue, this will increase the success rate in clinical research. The combined use of resected human brain tissue, alongside iPSC-derived neural models, could be considered a standard step in pre-clinical research and help to bridge the gap to clinical trials.


Dementia/drug therapy , Drug Discovery/methods , Neurons/metabolism , Animals , Brain/physiopathology , Dementia/physiopathology , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , Translational Research, Biomedical/methods
18.
Brain ; 139(Pt 3): 891-907, 2016 Mar.
Article En | MEDLINE | ID: mdl-26747862

The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer's disease. However, the study of microglial proliferation in Alzheimer's disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer's disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer's-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-ß plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-ß plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer's disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer's disease.


Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Cell Proliferation/drug effects , Disease Progression , Drug Delivery Systems , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Alzheimer Disease/metabolism , Animals , Anisoles/administration & dosage , Cell Proliferation/physiology , Drug Delivery Systems/methods , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/prevention & control , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
19.
Brain ; 137(Pt 8): 2312-28, 2014 Aug.
Article En | MEDLINE | ID: mdl-24941947

The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer's disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases.


Hippocampus/pathology , Neural Pathways/pathology , Neurodegenerative Diseases/pathology , Neurogenesis/physiology , Prion Diseases/pathology , Tissue Banks , Adult , Aged , Alzheimer Disease/pathology , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacology , Cell Proliferation , Chronic Disease , Creutzfeldt-Jakob Syndrome/pathology , Cytarabine/administration & dosage , Cytarabine/pharmacology , Dentate Gyrus/cytology , Dentate Gyrus/pathology , Dentate Gyrus/ultrastructure , Disease Models, Animal , Disease Progression , Female , Genetic Vectors , Hippocampus/cytology , Hippocampus/ultrastructure , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mossy Fibers, Hippocampal/ultrastructure , Neural Pathways/cytology , Neural Pathways/ultrastructure , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neural Stem Cells/ultrastructure , Neuroanatomical Tract-Tracing Techniques , Patch-Clamp Techniques , Prions/pathogenicity , Time Factors , Young Adult
20.
J Neurosci ; 31(5): 1688-92, 2011 Feb 02.
Article En | MEDLINE | ID: mdl-21289177

Amyloid ß (Aß) and tau protein are both implicated in memory impairment, mild cognitive impairment (MCI), and early Alzheimer's disease (AD), but whether and how they interact is unknown. Consequently, we asked whether tau protein is required for the robust phenomenon of Aß-induced impairment of hippocampal long-term potentiation (LTP), a widely accepted cellular model of memory. We used wild-type mice and mice with a genetic knock-out of tau protein and recorded field potentials in an acute slice preparation. We demonstrate that the absence of tau protein prevents Aß-induced impairment of LTP. Moreover, we show that Aß increases tau phosphorylation and that a specific inhibitor of the tau kinase glycogen synthase kinase 3 blocks the increased tau phosphorylation induced by Aß and prevents Aß-induced impairment of LTP in wild-type mice. Together, these findings show that tau protein is required for Aß to impair synaptic plasticity in the hippocampus and suggest that the Aß-induced impairment of LTP is mediated by tau phosphorylation. We conclude that preventing the interaction between Aß and tau could be a promising strategy for treating cognitive impairment in MCI and early AD.


Amyloid beta-Peptides/pharmacology , Glycogen Synthase Kinase 3/pharmacology , Hippocampus/physiopathology , Long-Term Potentiation , Neuronal Plasticity , Neurons , Peptide Fragments/pharmacology , tau Proteins/metabolism , Animals , Blotting, Western , Electrophysiology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Organ Culture Techniques , Phosphorylation/drug effects , Polymerase Chain Reaction , tau Proteins/deficiency , tau Proteins/genetics
...