Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Adv ; 10(12): eadk5440, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38517963

Label-free thermometry is a pivotal tool for many disciplines. However, most current approaches are only suitable for planar heat sources in steady state, thereby restricting the range of systems that can be reliably studied. Here, we introduce pump probe-based optical diffraction tomography (ODT) as a method to map temperature precisely and accurately in three dimensions (3D) at the single-particle level. To do so, we first systematically characterize the thermal landscape in a model system consisting of gold nanorods in a microchamber and then benchmark the results against simulations and quantitative phase imaging thermometry. We then apply ODT thermometry to resolve thermal landscapes inaccessible to other label-free approaches in the form of nonplanar heat sources embedded in complex environments and freely diffusing gold nanorods in a microchamber. Last, we foresee that our approach will find many applications where routine thermal characterization of heterogeneous nanoparticles samples in 3D or in non-steady state is required.

2.
Nano Lett ; 22(16): 6737-6743, 2022 Aug 24.
Article En | MEDLINE | ID: mdl-35920815

The emergence of dielectric open optical cavities has opened a new research avenue in nanophotonics. In particular, dielectric microspheres support a rich set of cavity modes with varying spectral characteristics, making them an ideal platform to study molecule-cavity interactions. The symmetry of the structure plays a critical role in the outcoupling of these modes and, hence, the perceived molecule-cavity coupling strength. Here, we experimentally and theoretically study molecule-cavity coupling mediated by the Mie scattering modes of a dielectric microsphere placed on a glass substrate and excited with far-field illumination, from which we collect scattering signatures both in the air and glass sides. Glass-side collection reveals clear signatures of strong molecule-cavity coupling (coupling strength 2g = 74 meV), in contrast to the air-side scattering signal. Rigorous electromagnetic modeling allows us to understand molecule-cavity coupling and unravel the role played by the spatial mode profile in the observed coupling strength.

3.
J Phys Chem Lett ; 13(4): 1019-1024, 2022 Feb 03.
Article En | MEDLINE | ID: mdl-35061940

Can we couple multiple molecular species to soft cavities? The answer to this question has relevance in designing open cavities for polaritonic chemistry applications. Because of the differences in adhesiveness, it is difficult to couple multiple molecular species to open cavities in a controlled and precise manner. In this Letter, we discuss the procedure to coat multiple dyes, TDBC and S2275, onto a dielectric microsphere using a layer-by-layer deposition technique so as to facilitate the multimolecule coupling. We observed the formation of a middle polariton branch due to the intermolecular mixing facilitated by the whispering gallery modes. The coupling strength, 2g, of the TDBC molecules was found to be 98 meV, while that of the S2275 molecules was 78 meV. The coupling strength was found to be greater than the cavity line width and the molecular absorption line width, showing that the system is in the strong coupling regime.

4.
Nanoscale ; 13(34): 14497-14505, 2021 Sep 02.
Article En | MEDLINE | ID: mdl-34473173

The way molecules absorb, transfer, and emit light can be modified by coupling them to optical cavities. The extent of the modification is often defined by the cavity-molecule coupling strength, which depends on the number of coupled molecules. We experimentally and numerically study the evolution of photoemission from a thin layered J-aggregated molecular material strongly coupled to a Fabry-Perot microcavity as a function of the number of coupled layers. We unveil an important difference between the strong coupling signatures obtained from reflection spectroscopy and from polariton assisted photoluminescence. We also study the effect of the vibrational modes supported by the molecular material on the polariton assisted emission both for a focused laser beam and for normally incident excitation, for two different excitation wavelengths: a laser in resonance with the lower polariton branch, and a laser not in resonance. We found that Raman scattered photons appear to play an important role in populating the lower polariton branch, especially when the system was excited with a laser in resonance with the lower polariton branch. We also found that the polariton assisted photoemission depends on the extent of modification of the molecular absorption induced by the molecule-cavity coupling.

5.
J Phys Chem Lett ; 12(28): 6589-6595, 2021 Jul 22.
Article En | MEDLINE | ID: mdl-34242502

We report on the experimental observation of beaming elastic and surface enhanced Raman scattering (SERS) emission from a bent-nanowire on a mirror (B-NWoM) cavity. The system was probed with polarization resolved Fourier plane and energy-momentum imaging to study the spectral and angular signature of the emission wavevectors. The out-coupled elastically scattered light from the kink occupies a narrow angular spread. We used a self-assembled monolayer of molecules with a well-defined molecular orientation to utilize the out-of-plane electric field in the cavity for enhancing Raman emission from the molecules and in achieving beaming SERS emission. Calculated directionality for elastic scattering and SERS emission was found to be 16.2 and 12.5 dB, respectively. The experimental data were corroborated with three-dimensional numerical finite element and finite difference time domain based numerical simulations. The results presented here may find relevance in understanding coupling of emitters with elongated plasmonic cavities and in designing on-chip optical antennas.

6.
J Phys Condens Matter ; 33(1): 015701, 2021 Jan 06.
Article En | MEDLINE | ID: mdl-33034303

Chiral interfaces provide a new platform to execute quantum control of light-matter interactions. One phenomenon which has emerged from engineering such nanophotonic interfaces is spin-momentum locking akin to similar reports in electronic topological materials and phases. While there are reports of spin-momentum locking with combination of chiral emitters and/or chiral metamaterials with directional far field excitation it is not readily observable with both achiral emitters and metamaterials. Here, we report the observation of photonic spin-momentum locking in the form of directional and chiral emission from achiral quantum dots (QDs) evanescently coupled to achiral hyperbolic metamaterials (HMM). Efficient coupling between QDs and the metamaterial leads to emergence of these photonic topological modes which can be detected in the far field. We provide theoretical explanation for the emergence of spin-momentum locking through rigorous modeling based on photon Green's function where pseudo spin of light arises from coupling of QDs to evanescent modes of HMM.

7.
Nano Lett ; 20(3): 1766-1773, 2020 Mar 11.
Article En | MEDLINE | ID: mdl-32069420

We report strong coupling of a monolayer of J-aggregated dye molecules to the whispering gallery modes of a dielectric microsphere at room temperature. We systematically studied the evolution of strong coupling as the number of layers of dye molecules was increased and found the Rabi splitting to rise from 56 meV for a single layer to 94 meV for four layers of dye molecules. We compare our experimental results with two-dimensional (2D) numerical simulations and a simple coupled oscillator model, finding good agreement. We anticipate that these results will act as a stepping stone for integrating molecule-cavity strong coupling in a microfluidic environment since microspheres can be easily trapped and manipulated in such an environment and provide open access cavities.

8.
Nanoscale ; 11(9): 3799-3803, 2019 Mar 07.
Article En | MEDLINE | ID: mdl-30785147

We report the design and fabrication of V-shaped plasmonic meta-polymers on a glass substrate or silicon wafer using a surface functionalization approach. The efficacy of the assembly method is examined by analyzing the surface enhanced Raman scattering by an individual V-shaped antenna experimentally and using computational simulations to determine the polarization dependence of local electromagnetic field enhancement.

9.
Appl Opt ; 57(21): 5914-5922, 2018 Jul 20.
Article En | MEDLINE | ID: mdl-30118013

Directional harmonic generation is an important property characterizing the ability of nonlinear optical antennas to diffuse the signal in a well-defined region of space. Herein, we show how sub-wavelength facets of an organic molecular mesowire crystal can be utilized to systematically vary the directionality of second-harmonic generation (SHG) in the forward-scattering geometry. We demonstrate this capability on crystalline diamonoanthraquinone (DAAQ) mesowires with sub-wavelength facets. We observed that the radial angles of the SHG emission can be tuned over a range of 130 deg. This angular variation arises due to spatially distributed nonlinear dipoles in the focal volume of the excitation as well as the geometrical cross section and facet orientation of the mesowire. Numerical simulations of the near-field excitation profile corroborate the role of the mesowire geometry in localizing the electric field. In addition to directional SHG from the mesowire, we experimentally observe optical waveguiding of the nonlinear two-photon excited fluorescence (TPEF). Interestingly, we observed that for a given pump excitation, the TPEF signal is isotropic and delocalized, whereas the SHG emission is directional and localized at the location of excitation. All the observed effects have direct implications not only in active nonlinear optical antennas but also in nonlinear signal processing.

10.
Opt Lett ; 43(11): 2474-2477, 2018 Jun 01.
Article En | MEDLINE | ID: mdl-29856407

Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.

11.
Opt Lett ; 43(4): 923-926, 2018 Feb 15.
Article En | MEDLINE | ID: mdl-29444028

Vertical nanowires facilitate an innovative mechanism to channel the optical field in the orthogonal direction and act as a nanoscale light source. Subwavelength, vertically oriented nanowire platforms, both of plasmonic and semiconducting variety, can facilitate interesting far-field emission profiles and potentially carry orbital angular momentum states. Motivated by these prospects, in this Letter, we show how a hybrid plasmonic-organic platform can be harnessed to engineer far-field radiation. The system that we have employed is an organic nanowire made of diaminoanthroquinone grown on a plasmonic gold film. We experimentally and numerically studied angular distribution of surface plasmon polariton mediated emission from a single, vertical organic nanowire by utilizing evanescent excitation and Fourier plane microscopy. Photoluminescence and elastic scattering from a single nanowire was analyzed individually in terms of inplane momentum states of the outcoupled photons. We found that the emission is doughnut-shaped in both photoluminescence and elastic scattering regimes. We anticipate that the discussed results can be relevant in designing efficient, polariton-mediated nanoscale photon sources that can carry orbital angular momentum states.

12.
Nano Lett ; 18(1): 650-655, 2018 01 10.
Article En | MEDLINE | ID: mdl-29244518

We report on the experimental observation of differential wavevector distribution of surface-enhanced Raman scattering (SERS) and fluorescence from dye molecules confined to a gap between plasmonic silver nanowire and a thin, gold mirror. The fluorescence was mainly confined to higher values of in-plane wavevectors, whereas SERS signal was uniformly distributed along all the wavevectors. The optical energy-momentum spectra from the distal end of the nanowire revealed strong polarization dependence of this differentiation. All these observations were corroborated by full-wave three-dimensional numerical simulations, which further revealed an interesting connection between out-coupled wavevectors and parameters such as hybridized modes in the gap-plasmon cavity, and orientation and location of molecular dipoles in the geometry. Our results reveal a new prospect of discriminating electronic and vibrational transitions in resonant dye molecules using a subwavelength gap plasmonic cavity in the continuous-wave excitation limit, and can be further harnessed to engineer molecular radiative relaxation processes in momentum space.

...