Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nutr Res ; 126: 180-192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759501

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum Stress , High-Intensity Interval Training , Insulin Resistance , Liver , Mice, Inbred C57BL , Mitochondria, Liver , Physical Conditioning, Animal , Animals , Diet, High-Fat/adverse effects , Male , Liver/metabolism , Mitochondria, Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Fatty Liver/prevention & control , Oxidation-Reduction
2.
Mol Cell Endocrinol ; 585: 112177, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38373652

ABSTRACT

AIM: To evaluate the effects of PPARα and PPARγ activation (alone or in combination) on the gut-liver axis, emphasizing the integrity of the intestinal barrier and hepatic steatosis in mice fed a high saturated fat diet. METHODS: Male C57BL/6J were fed a control diet (C) or a high-fat diet (HF) for ten weeks. Then, a four-week treatment started: HF-α (WY14643), HF-γ (low-dose pioglitazone), and HF-αγ (combination). RESULTS: The HF caused overweight, insulin resistance, impaired gut-liver axis, and marked hepatic steatosis. Treatments reduced body mass, improved glucose homeostasis, and restored the gut microbiota diversity and intestinal barrier gene expression. Treatments also lowered the plasma lipopolysaccharide concentrations and favored beta-oxidation genes, reducing macrophage infiltration and steatosis in the liver. CONCLUSION: Treatment with PPAR agonists modulated the gut microbiota and rescued the integrity of the intestinal barrier, alleviating hepatic steatosis. These results show that these agonists can contribute to metabolic-associated fatty liver disease treatment.


Subject(s)
Diet, High-Fat , Non-alcoholic Fatty Liver Disease , Male , Animals , Mice , Diet, High-Fat/adverse effects , PPAR alpha/genetics , PPAR alpha/metabolism , Obesity/metabolism , Mice, Inbred C57BL , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
3.
Nutrition ; 117: 112253, 2024 01.
Article in English | MEDLINE | ID: mdl-37944411

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS: Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION: PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.


Subject(s)
Adipocytes, Beige , Insulin Resistance , Animals , Male , Mice , Adipocytes, Beige/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects , Lipids , Mice, Inbred C57BL , Mitochondrial Dynamics , PPAR alpha/metabolism , Thermogenesis , Uncoupling Protein 1/metabolism
4.
World J Gastroenterol ; 29(26): 4136-4155, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37475842

ABSTRACT

The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Fatty Liver , Insulin Resistance , Metabolic Diseases , Humans , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , COVID-19/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Pancreas/metabolism , Fatty Liver/metabolism
5.
World J Gastroenterol ; 28(17): 1814-1829, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35633911

ABSTRACT

BACKGROUND: Obesity and comorbidities onset encompass gut dysbiosis, altered intestinal permeability, and endotoxemia. Treatments that target gut dysbiosis can cope with obesity and nonalcoholic fatty liver disease (NAFLD) management. Peroxisome proliferator-activated receptor (PPAR)-alpha activation and dipeptidyl-peptidase-4 (DPP-4) inhibition alleviate NAFLD, but the mechanism may involve gut microbiota modulation and merits further investigation. AIM: To address the effects of PPAR-alpha activation and DPP-4 inhibition (isolated or combined) upon the gut-liver axis, emphasizing inflammatory pathways in NAFLD management in high-fat-fed C57BL/6J mice. METHODS: Male C57BL/6J mice were fed a control diet (C, 10% of energy as lipids) or a high-fat diet (HFD, 50% of energy as lipids) for 12 wk, when treatments started, forming the groups: C, HF, HFA (HFD + PPAR-alpha agonist WY14643, 2.5 mg/kg body mass), HFL (HFD + DPP-4 inhibitor linagliptin, 15 mg/kg body mass), and HFC (HFD + the combination of WY14643 and linagliptin). RESULTS: The HFD was obesogenic compared to the C diet. All treatments elicited significant body mass loss, and the HFC group showed similar body mass to the C group. All treatments tackled oral glucose intolerance and raised plasma glucagon-like peptide-1 concentrations. These metabolic benefits restored Bacteroidetes/Firmicutes ratio, resulting in increased goblet cells per area of the large intestine and reduced lipopolysaccharides concentrations in treated groups. At the gene level, treated groups showed higher intestinal Mucin 2, Occludin, and Zo-1 expression than the HFD group. The reduced endotoxemia suppressed inflammasome and macrophage gene expression in the liver of treated animals. These observations complied with the mitigation of liver steatosis and reduced hepatic triacylglycerol, reassuring the role of the proposed treatments on NAFLD mitigation. CONCLUSION: PPAR alpha activation and DPP-4 inhibition (isolated or combined) tackled NAFLD in diet-induced obese mice by restoration of gut-liver axis. The reestablishment of the intestinal barrier and the rescued phylogenetic gut bacteria distribution mitigated liver steatosis through anti-inflammatory signals. These results can cope with NAFLD management by providing pre-clinical evidence that drugs used to treat obesity comorbidities can help to alleviate this silent and harmful liver disease.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Endotoxemia , Non-alcoholic Fatty Liver Disease , Obesity , PPAR alpha , Animals , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dysbiosis/drug therapy , Dysbiosis/metabolism , Endotoxemia/complications , Endotoxemia/drug therapy , Linagliptin/pharmacology , Linagliptin/therapeutic use , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , PPAR alpha/agonists , PPAR alpha/metabolism , Phylogeny
6.
World J Gastroenterol ; 27(16): 1738-1750, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33967554

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has drawn the scientific community's attention to pre-existing metabolic conditions that could aggravate the infection, causing extended viral shedding, prolonged hospitalization, and high death rates. Metabolic dysfunction-associated fatty liver disease (MAFLD) emerges as a surrogate for COVID-19 severity due to the constellation of metabolic alterations it entails. This review outlines the impact MAFLD exerts on COVID-19 severity in obese subjects, besides the possible mechanistic links to the poor outcomes. The data collected showed that MAFLD patients had poorer COVID-19 outcomes than non-MAFLD obese subjects. MAFLD is generally accompanied by impaired glycemic control and systemic arterial hypertension, both of which can decompensate during the COVID-19 clinical course. Also, MAFLD subjects had higher plasma inflammatory marker concentrations than non-MAFLD subjects, which might be related to an intensified cytokine storm syndrome frequently associated with the need for mechanical ventilation and death. In conclusion, MAFLD represents a higher risk than obesity for COVID-19 severity, resulting in poor outcomes and even progression to non-alcoholic steatohepatitis. Hepatologists should include MAFLD subjects in the high-risk group, intensify preventive measurements, and prioritize their vaccination.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Obesity/complications , Obesity/epidemiology , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL