Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Methods Mol Biol ; 2797: 287-297, 2024.
Article En | MEDLINE | ID: mdl-38570468

Dysfunction of the RAS/mitogen-activated protein kinase (MAPK) pathway is a common driver of human cancers. As such, both the master regulator of the pathway, RAS, and its proximal kinase effectors, RAFs, have been of interest as drug targets for decades. Importantly, signaling within the RAS/MAPK pathway is highly coordinated due to the formation of a higher-order complex called the RAS/RAF signalosome, which may minimally contain dimers of both RAS and RAF protomers. In the disease state, RAS and RAF assemble in homo- and/or heterodimeric forms. Traditionally, drug development campaigns for both RAS and RAF have utilized biochemical assays of purified recombinant protein. As these assays do not query the RAS or RAF proteins in their full-length and complexed forms in cells, potency results collected using these assays have often failed to correlate with inhibition of the MAPK pathway. To more accurately quantify engagement at this signaling components, we present a bioluminescence resonance energy transfer (BRET)-based method to conditionally measure target engagement at individual protomers within the RAS/RAF signalosome in live cells.


Mitogen-Activated Protein Kinases , Proto-Oncogene Proteins c-raf , Humans , Proto-Oncogene Proteins c-raf/metabolism , Protein Subunits , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction
2.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Article En | MEDLINE | ID: mdl-38225213

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Male , Humans , Aged , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3 , Androgens , TOR Serine-Threonine Kinases/metabolism , Prostatic Neoplasms/genetics , Cell Proliferation , Apoptosis , Cell Line, Tumor
3.
Cell Chem Biol ; 30(11): 1354-1365.e6, 2023 11 16.
Article En | MEDLINE | ID: mdl-37643616

RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells. RAF target engagement can be measured in the presence or absence of any mutant KRAS allele, enabling the high-affinity state of RAF dimer inhibitors to be quantified in the cellular milieu. The intracellular protomer selectivity of clinical-stage type II RAF inhibitors revealed that ARAF protomer engagement, but not engagement of BRAF or CRAF, is commensurate with inhibition of MAPK signaling in various mutant RAS cell lines. Our results support a fundamental role for ARAF in mutant RAS signaling and reveal poor ARAF protomer vulnerability for a cohort of RAF inhibitors undergoing clinical evaluation.


Proto-Oncogene Proteins B-raf , Signal Transduction , Humans , Protein Subunits/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mutation , MAP Kinase Signaling System
4.
Methods Mol Biol ; 2706: 97-124, 2023.
Article En | MEDLINE | ID: mdl-37558944

Kinases represent one of the most therapeutically tractable targets for drug discovery in the twenty-first century. However, confirming engagement and achieving intracellular kinase selectivity for small-molecule kinase inhibitors can represent noteworthy challenges. The NanoBRETTM platform enables broad-spectrum live-cell kinase selectivity profiling in most laboratory settings, without advanced instrumentation or expertise. However, the prototype workflow for this selectivity profiling is currently limited to manual liquid handling and 96-well plates. Herein, we describe a scalable workflow with automation and acoustic dispensing, thus dramatically improving the throughput. Such adaptations enable profiling of larger compound sets against 192 full-length protein kinases in live cells, with statistical robustness supporting quantitative analysis.


High-Throughput Screening Assays , Protein Kinases , Protein Kinases/metabolism , Drug Discovery
5.
Cell Chem Biol ; 30(8): 987-998.e24, 2023 08 17.
Article En | MEDLINE | ID: mdl-37490918

DNA-encoded libraries (DELs) provide unmatched chemical diversity and starting points for novel drug modalities. Here, we describe a workflow that exploits the bifunctional attributes of DEL ligands as a platform to generate BRET probes for live cell target engagement studies. To establish proof of concept, we performed a DEL screen using aurora kinase A and successfully converted aurora DEL ligands as cell-active BRET probes. Aurora BRET probes enabled the validation and stratification of the chemical series identified from primary selection data. Furthermore, we have evaluated the effective repurposing of pre-existing DEL screen data to find suitable leads for BRET probe development. Our findings support the use of DEL workflows as an engine to create cell-active BRET probes independent of structure or compound SAR. The combination of DEL and BRET technology accelerates hit-to-lead studies in a live cell setting.


Research , Ligands
6.
Molecules ; 28(7)2023 Mar 25.
Article En | MEDLINE | ID: mdl-37049713

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.


Cell Cycle Proteins , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Protein Kinases , Cell Proliferation , Mitosis , Protein Kinase Inhibitors/pharmacology
7.
bioRxiv ; 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36865333

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential anti target of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1 we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In cell target engagement for PLK1 was in good agreement with the reported cellular potency for inhibition of cell proliferation. Probe 11 enabled investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib by NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.

8.
Nat Chem Biol ; 19(2): 230-238, 2023 02.
Article En | MEDLINE | ID: mdl-36302899

Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis. Guided by crystallography, activity assays and cellular CoQ measurements, we repurposed the 4-anilinoquinoline scaffold to selectively inhibit human COQ8A in cells. Our chemical tool promises to lend mechanistic insights into the activities of these widespread and understudied proteins and to offer potential therapeutic strategies for human diseases connected to their dysfunction.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Ubiquinone/pharmacology , Ubiquinone/chemistry , Saccharomyces cerevisiae Proteins/metabolism
9.
Front Cell Dev Biol ; 10: 886537, 2022.
Article En | MEDLINE | ID: mdl-35721509

E3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins via recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options. Recent efforts have focused on the E3 family of Baculovirus IAP Repeat (BIR) domains that comprise a structurally conserved but diverse 70 amino acid long protein interaction domain. In the human proteome, 16 BIR domains have been identified, among them promising drug targets such as the Inhibitors of Apoptosis (IAP) family, that typically contain three BIR domains (BIR1, BIR2, and BIR3). To date, this target area lacks assay tools that would allow comprehensive evaluation of inhibitor selectivity. As a consequence, the selectivity of current BIR domain targeting inhibitors is unknown. To this end, we developed assays that allow determination of inhibitor selectivity in vitro as well as in cellulo. Using this toolbox, we have characterized available BIR domain inhibitors. The characterized chemical starting points and selectivity data will be the basis for the generation of new chemical probes for IAP proteins with well-characterized mode of action and provide the basis for future drug discovery efforts and the development of PROTACs and molecular glues.

10.
Nat Chem Biol ; 18(6): 596-604, 2022 06.
Article En | MEDLINE | ID: mdl-35314814

Current small-molecule inhibitors of KRAS(G12C) bind irreversibly in the switch-II pocket (SII-P), exploiting the strong nucleophilicity of the acquired cysteine as well as the preponderance of the GDP-bound form of this mutant. Nevertheless, many oncogenic KRAS mutants lack these two features, and it remains unknown whether targeting the SII-P is a practical therapeutic approach for KRAS mutants beyond G12C. Here we use NMR spectroscopy and a cellular KRAS engagement assay to address this question by examining a collection of SII-P ligands from the literature and from our own laboratory. We show that the SII-Ps of many KRAS hotspot (G12, G13, Q61) mutants are accessible using noncovalent ligands, and that this accessibility is not necessarily coupled to the GDP state of KRAS. The results we describe here emphasize the SII-P as a privileged drug-binding site on KRAS and unveil new therapeutic opportunities in RAS-driven cancer.


Multiple Myeloma , Proto-Oncogene Proteins p21(ras) , Humans , Ligands , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
11.
J Med Chem ; 65(2): 1370-1383, 2022 01 27.
Article En | MEDLINE | ID: mdl-34668706

Inhibitors targeting the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harboring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations has motivated the development of successive generations of inhibitors that bind in the ATP site. The third-generation agent osimertinib is now a first-line treatment for this disease. Recently, allosteric inhibitors have been developed to overcome drug-resistant mutations that confer a resistance to osimertinib. Here, we present the structure-guided design and synthesis of a mutant-selective lead compound, which consists of a pyridinyl imidazole-fused benzylisoindolinedione scaffold that simultaneously occupies the orthosteric and allosteric sites. The compound potently inhibits enzymatic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with a significantly lower activity for wild-type EGFR (47 nM). Additionally, this compound achieves modest cetuximab-independent and mutant-selective cellular efficacies on the L858R (1.2 µM) and L858R/T790M (4.4 µM) variants.


Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Design , Drug Resistance, Neoplasm/drug effects , Imidazoles/chemistry , Mutation , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Allosteric Site , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology
12.
STAR Protoc ; 2(4): 100822, 2021 12 17.
Article En | MEDLINE | ID: mdl-34568844

This protocol is used to profile the engagement of kinase inhibitors across nearly 200 kinases in a live-cell context. This protocol utilizes one single kinase tracer (NanoBRET(TM) Tracer K10) that operates quantitatively at four different concentrations. Minimizing the number of tracers offers a significant workflow improvement over the previous protocol that utilized a combination of 6 tracers. Each NanoBRET(TM) kinase assay is built using commercially available plasmids and has been optimized for NanoLuc tagging orientation, diluent DNA, and tracer concentration. For complete details on the use and execution of this protocol, please refer to Vasta et al. (2018).


Biological Assay , Phosphotransferases , Luciferases
13.
Methods Mol Biol ; 2365: 265-282, 2021.
Article En | MEDLINE | ID: mdl-34432249

Target engagement and cell permeation are important parameters that may limit the efficacy of proteolysis-targeting chimeras (PROTACs). Here, we present an approach that facilitates both the quantitation of PROTAC binding affinity for an E3 ligase of interest, as well as the assessment of relative intracellular availability. We present a panel of E3 ligase target engagement assays based upon the NanoBRET Target Engagement platform. Querying E3 ligase engagement under live-cell and permeabilized-cell conditions allow calculation of an availability index that can be used to rank order the intracellular availability of PROTACs. Here we present examples where the cellular availability of PROTACs and their monovalent precursors are prioritized using NanoBRET assays for CRBN or VHL E3 ligases.


Cell Membrane Permeability , Ubiquitin-Protein Ligases , Permeability , Proteolysis , Ubiquitin-Protein Ligases/metabolism
14.
SLAS Discov ; 26(4): 560-569, 2021 04.
Article En | MEDLINE | ID: mdl-33190579

Targeted protein degradation using heterobifunctional proteolysis-targeting chimera (PROTAC) compounds, which recruit E3 ligase machinery to a target protein, is increasingly becoming an attractive pharmacologic strategy. PROTAC compounds are often developed from existing inhibitors, and assessing selectivity is critical for understanding on-target and off-target degradation. We present here an in-depth kinetic degradation study of the pan-kinase PROTAC, TL12-186, applied to 16 members of the cyclin-dependent kinase (CDK) family. Each CDK family member was endogenously tagged with the 11-amino-acid HiBiT peptide, allowing for live cell luminescent monitoring of degradation. Using this approach, we found striking differences and patterns in kinetic degradation rates, potencies, and Dmax values across the CDK family members. Analysis of the responses revealed that most of the CDKs showed rapid and near complete degradation, yet all cell cycle-associated CDKs (1, 2, 4, and 6) showed multimodal and partial degradation. Further mechanistic investigation of the key cell cycle protein CDK2 was performed and revealed CDK2 PROTAC-dependent degradation in unsynchronized or G1-arrested cells but minimal loss in S or G2/M arrest. The ability of CDK2 to form the PROTAC-mediated ternary complex with CRBN in only G1-arrested cells matched these trends, despite binding of CDK2 to TL12-186 in all phases. These data indicate that target subpopulation degradation can occur, dictated by the formation of the ternary complex. These studies additionally underscore the importance of profiling degradation compounds in cellular systems where complete pathways are intact and target proteins can be characterized in their relevant complexes.


Biological Assay , Cell Cycle/drug effects , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Oxindoles/pharmacology , Piperidines/pharmacology , Protein Processing, Post-Translational , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , CRISPR-Cas Systems , Cell Cycle/genetics , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 4/genetics , HEK293 Cells , Humans , Kinetics , Proteasome Endopeptidase Complex/drug effects , Protein Binding , Proteolysis/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Staining and Labeling , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects
15.
Nat Commun ; 11(1): 2743, 2020 06 02.
Article En | MEDLINE | ID: mdl-32488087

Concerted multidisciplinary efforts have led to the development of Cyclin-Dependent Kinase inhibitors (CDKi's) as small molecule drugs and chemical probes of intracellular CDK function. However, conflicting data has been reported on the inhibitory potency of CDKi's and a systematic characterization of affinity and selectivity against intracellular CDKs is lacking. We have developed a panel of cell-permeable energy transfer probes to quantify target occupancy for all 21 human CDKs in live cells, and present a comprehensive evaluation of intracellular isozyme potency and selectivity for a collection of 46 clinically-advanced CDKi's and tool molecules. We observed unexpected intracellular activity profiles for a number of CDKi's, offering avenues for repurposing of highly potent molecules as probes for previously unreported targets. Overall, we provide a broadly applicable method for evaluating the selectivity of CDK inhibitors in living cells, and present a refined set of tool molecules to study CDK function.


Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinase Inhibitor Proteins/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , CDC2 Protein Kinase , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Cyclin-Dependent Kinase 9 , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Phosphorylation , Structure-Activity Relationship
16.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Article En | MEDLINE | ID: mdl-32251410

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Carcinoma, Pancreatic Ductal/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement , Doublecortin Protein , Doublecortin-Like Kinases , Drug Screening Assays, Antitumor , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacokinetics , Proteomics , Rats , Structure-Activity Relationship , Zebrafish , Pancreatic Neoplasms
17.
Angew Chem Int Ed Engl ; 58(2): 515-519, 2019 01 08.
Article En | MEDLINE | ID: mdl-30431220

Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.

18.
Methods Mol Biol ; 1888: 45-71, 2019.
Article En | MEDLINE | ID: mdl-30519940

Intracellular target affinity and residence time are fundamental aspects of pharmacological mechanism (Lu and Tonge, Curr Opin Chem Biol 14:467-474, 2010). Although various robust biochemical approaches exist to measure these binding characteristics, analysis of compound binding with isolated targets may not accurately reflect engagement in the milieu of living cells. To realize the influence of cellular context, methods are needed that are capable of quantifying affinity and residence time in the presence of the intracellular factors that may impact target engagement. Bioluminescence resonance energy transfer (BRET) offers a solution for intracellular target engagement when quantitative metrics or kinetic analyses are required.


Drug Discovery/methods , Fluorescence Resonance Energy Transfer , Luminescent Measurements , Cell Culture Techniques , Cell Line , Fluorescence Resonance Energy Transfer/methods , High-Throughput Screening Assays , Humans , Luminescent Measurements/methods , Molecular Probes/chemistry , Molecular Probes/metabolism , Permeability , Reproducibility of Results
19.
J Am Chem Soc ; 140(46): 15774-15782, 2018 11 21.
Article En | MEDLINE | ID: mdl-30362749

Target residence time is emerging as an important optimization parameter in drug discovery, yet target and off-target engagement dynamics have not been clearly linked to the clinical performance of drugs. Here we developed high-throughput binding kinetics assays to characterize the interactions of 270 protein kinase inhibitors with 40 clinically relevant targets. Analysis of the results revealed that on-rates are better correlated with affinity than off-rates and that the fraction of slowly dissociating drug-target complexes increases from early/preclinical to late stage and FDA-approved compounds, suggesting distinct contributions by each parameter to clinical success. Combining binding parameters with PK/ADME properties, we illustrate in silico and in cells how kinetic selectivity could be exploited as an optimization strategy. Furthermore, using bio- and chemoinformatics we uncovered structural features influencing rate constants. Our results underscore the value of binding kinetics information in rational drug design and provide a resource for future studies on this subject.


Phosphotransferases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Binding Sites , Drug Discovery , Humans , Kinetics , Molecular Structure , Phosphotransferases/metabolism , Protein Kinase Inhibitors/chemistry
20.
ACS Chem Biol ; 13(9): 2758-2770, 2018 09 21.
Article En | MEDLINE | ID: mdl-30137962

A new generation of heterobifunctional small molecules, termed proteolysis targeting chimeras (PROTACs), targets proteins for degradation through recruitment to E3 ligases and holds significant therapeutic potential. Despite numerous successful examples, PROTAC small molecule development remains laborious and unpredictable, involving testing compounds for end-point degradation activity at fixed times and concentrations without resolving or optimizing for the important biological steps required for the process. Given the complexity of the ubiquitin proteasomal pathway, technologies that enable real-time characterization of PROTAC efficacy and mechanism of action are critical for accelerating compound development, profiling, and improving guidance of chemical structure-activity relationship. Here, we present an innovative, modular live-cell platform utilizing endogenous tagging technologies and apply it to monitoring PROTAC-mediated degradation of the bromodomain and extra-terminal family members. We show comprehensive real-time degradation and recovery profiles for each target, precisely quantifying degradation rates, maximal levels of degradation ( Dmax), and time frame at Dmax. These degradation metrics show specific PROTAC and family member-dependent responses that are closely associated with the key cellular protein interactions required for the process. Kinetic studies show cellular ternary complex stability influences potency and degradation efficacy. Meanwhile, the level of ubiquitination is highly correlated to degradation rate, indicating ubiquitination stemming from productive ternary complex formation is the main driver of the degradation rate. The approaches applied here highlight the steps at which the choice of E3 ligase handle can elicit different outcomes and discern individual parameters required for degradation, ultimately enabling chemical design strategies and rank ordering of potential therapeutic compounds.


Proteolysis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , Kinetics
...