Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
PLoS One ; 19(5): e0302684, 2024.
Article En | MEDLINE | ID: mdl-38722858

BACKGROUND: In most cases, Zika virus (ZIKV) causes a self-limited acute illness in adults, characterized by mild clinical symptoms that resolve within a few days. Immune responses, both innate and adaptive, play a central role in controlling and eliminating virus-infected cells during the early stages of infection. AIM: To test the hypothesis that circulating T cells exhibit phenotypic and functional activation characteristics during the viremic phase of ZIKV infection. METHODS: A comprehensive analysis using mass cytometry was performed on peripheral blood mononuclear cells obtained from patients with acute ZIKV infection (as confirmed by RT-PCR) and compared with that from healthy donors (HD). The frequency of IFN-γ-producing T cells in response to peptide pools covering immunogenic regions of structural and nonstructural ZIKV proteins was quantified using an ELISpot assay. RESULTS: Circulating CD4+ and CD8+ T lymphocytes from ZIKV-infected patients expressed higher levels of IFN-γ and pSTAT-5, as well as cell surface markers associated with proliferation (Ki-67), activation ((HLA-DR, CD38) or exhaustion (PD1 and CTLA-4), compared to those from HD. Activation of CD4+ and CD8+ memory T cell subsets, including Transitional Memory T Cells (TTM), Effector Memory T cells (TEM), and Effector Memory T cells Re-expressing CD45RA (TEMRA), was prominent among CD4+ T cell subset of ZIKV-infected patients and was associated with increased levels of IFN-γ, pSTAT-5, Ki-67, CTLA-4, and PD1, as compared to HD. Additionally, approximately 30% of ZIKV-infected patients exhibited a T cell response primarily directed against the ZIKV NS5 protein. CONCLUSION: Circulating T lymphocytes spontaneously produce IFN-γ and express elevated levels of pSTAT-5 during the early phase of ZIKV infection whereas recognition of ZIKV antigen results in the generation of virus-specific IFN-γ-producing T cells.


CD8-Positive T-Lymphocytes , Interferon-gamma , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/immunology , Zika Virus Infection/epidemiology , Adult , Zika Virus/immunology , Female , Male , Interferon-gamma/metabolism , Interferon-gamma/immunology , Brazil/epidemiology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Middle Aged , Young Adult , Epidemics , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
3.
Front Cell Infect Microbiol ; 13: 1165756, 2023.
Article En | MEDLINE | ID: mdl-37342247

Introduction: Increasing evidence has shown that coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunological response. Previous studies have demonstrated that natural killer (NK) cell dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of NK cell markers as a driver of death in the most critically ill patients. Methods: We enrolled 50 non-vaccinated hospitalized patients infected with the initial virus or the alpha variant of SARS-CoV-2 with moderate or severe illness, to evaluate phenotypic and functional features of NK cells. Results: Here, we show that, consistent with previous studies, evolution NK cells from COVID-19 patients are more activated, with the decreased activation of natural cytotoxicity receptors and impaired cytotoxicity and IFN-γ production, in association with disease regardless of the SARS-CoV-2 strain. Fatality was observed in 6 of 17 patients with severe disease; NK cells from all of these patients displayed a peculiar phenotype of an activated memory-like phenotype associated with massive TNF-α production. Discussion: These data suggest that fatal COVID-19 infection is driven by an uncoordinated inflammatory response in part mediated by a specific subset of activated NK cells.


COVID-19 , Killer Cells, Natural , SARS-CoV-2 , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , SARS-CoV-2/classification , SARS-CoV-2/physiology , Patient Acuity , Fatal Outcome , COVID-19 Vaccines , Male , Adult , Middle Aged , Aged , Aged, 80 and over , Receptors, Natural Killer Cell/metabolism , Tumor Necrosis Factor-alpha , Lymphocyte Activation
4.
Front Immunol ; 13: 893450, 2022.
Article En | MEDLINE | ID: mdl-35911747

The COVID-19 pandemic has occurred due to infection caused by the SARS-CoV-2 coronavirus, which impacts gestation and pregnancy. In SARS-CoV-2 infection, only very rare cases of vertical transmission have been reported, suggesting that fetal immune imprinting due to a maternal infection is probably a result of changes in maternal immunity. Natural killer (NK) cells are the leading maternal immune cells that act as a natural defense system to fight infections. They also play a pivotal role in the establishment and maintenance of pregnancy. While peripheral NK cells display specific features in patients infected with SARS-CoV-2 in the general population, information remains elusive in pregnant mothers and neonates. In the present study, we analyzed the characteristics of NK cells isolated from both neonatal umbilical cord blood and maternal peripheral blood close to the time of delivery. Phenotype and functions were compared in 18 healthy pregnant women and 34 COVID-19 patients during pregnancy within an ongoing infection (PCR+; N = 15) or after recovery (IgG+PCR-; N = 19). The frequency of NK cells from infected women and their neonates was correlated with the production of inflammatory cytokines in the serum. The expression of NKG2A and NKp30, as well as degranulation of NK cells in pregnant women with ongoing infection, were both negatively correlated to estradiol level. Furthermore, NK cells from the neonates born to infected women were significantly decreased and also correlated to estradiol level. This study highlights the relationship between NK cells, inflammation, and estradiol in patients with ongoing infection, providing new insights into the impact of maternal SARS-CoV-2 infection on the neonate.


COVID-19 , Pregnancy Complications, Infectious , Estradiol , Female , Humans , Killer Cells, Natural , Pandemics , Parturition , Pregnancy , SARS-CoV-2
5.
Cancers (Basel) ; 14(15)2022 Aug 08.
Article En | MEDLINE | ID: mdl-35954502

Immunotherapy with chimeric antigen receptor-engineered T cells (CAR-T) has revolutionized the treatment landscape of relapsed/refractory B-cell malignancies. Nonetheless, the use of autologous T cells has certain limitations, including the variable quality and quantity of collected effector T cells, extended time of cell processing, limited number of available CAR cells, toxicities, and a high cost. Thanks to their powerful cytotoxic capabilities, with proven antitumor effects in both haploidentical hematopoietic stem cell transplantation and adoptive cell therapy against solid tumors and hematological malignancies, Natural Killer cells could be a promising alternative. Different sources of NK cells can be used, including cellular lines, cord blood, peripheral blood, and induced pluripotent stem cells. Their biggest advantage is the possibility of using them in an allogeneic context without major toxic side effects. However, the majority of the reports on CAR-NK cells concern preclinical or early clinical trials. Indeed, NK cells might be more difficult to engineer, and the optimization and standardization of expansion and transfection protocols need to be defined. Furthermore, their short persistence after infusion is also a major setback. However, with recent advances in manufacturing engineered CAR-NK cells exploiting their cytolytic capacities, antibody-dependent cellular cytotoxicity (ADCC), and cytokine production, "off-the-shelf" allogeneic CAR-NK cells can provide a great potential in cancer treatments.

6.
Front Immunol ; 13: 844727, 2022.
Article En | MEDLINE | ID: mdl-35529881

The immunopathological pulmonary mechanisms leading to Coronavirus Disease (COVID-19)-related death in adults remain poorly understood. Bronchoalveolar lavage (BAL) and peripheral blood sampling were performed in 74 steroid and non-steroid-treated intensive care unit (ICU) patients (23-75 years; 44 survivors). Peripheral effector SARS-CoV-2-specific T cells were detected in 34/58 cases, mainly directed against the S1 portion of the spike protein. The BAL lymphocytosis consisted of T cells, while the mean CD4/CD8 ratio was 1.80 in non-steroid- treated patients and 1.14 in steroid-treated patients. Moreover, strong BAL SARS-CoV-2 specific T-cell responses were detected in 4/4 surviving and 3/3 non-surviving patients. Serum IFN-γ and IL-6 levels were decreased in steroid-treated patients when compared to non-steroid treated patients. In the lung samples from 3 (1 non-ICU and 2 ICU) additional deceased cases, a lymphocytic memory CD4 T-cell angiopathy colocalizing with SARS-CoV-2 was also observed. Taken together, these data show that disease severity occurs despite strong antiviral CD4 T cell-specific responses migrating to the lung, which could suggest a pathogenic role for perivascular memory CD4 T cells upon fatal COVID-19 pneumonia.


COVID-19 , Pneumonia , Adult , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lung , SARS-CoV-2
7.
Front Immunol ; 13: 848571, 2022.
Article En | MEDLINE | ID: mdl-35464449

W614A-3S peptide is a modified 3S motif of the HIV-gp41 (mutation W614A). We previously detected the presence of natural neutralizing antibodies directed against W614A-3S peptide (NAbs) in long-term non-progressor HIV+ patients. Here, we compared the efficacy of W614A-3S peptide formulated in either squalene emulsion (SQE) or in aluminum hydroxide (Alum) in inducing broadly-NAbs (bNAbs). Rabbit and mouse models were used to screen the induction of bNAbs following 4 immunizations. SQE was more efficient than Alum formulation in inducing W614A-3S-specific bNAbs with up to 67%-93% of HIV strains neutralized. We then analyzed the quality of peptide-specific murine B cells by single-cell gene expression by quantitative reverse transcription-PCR and single-cell V(D)J sequencing. We found more frequent germinal center B cells in SQE than in Alum, albeit with a different gene expression profile. The V(D)J sequencing of W614A-3S-specific BCR showed significant differences in BCR sequences and validates the dichotomy between adjuvant formulations. All sixteen BCR sequences which were cloned were specific of peptide. Adjuvant formulations of W614A-3S-peptide-conjugated immunogen impact the quantity and quality of B cell immune responses at both the gene expression level and BCR sequence.


Antibodies, Neutralizing , HIV Infections , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Broadly Neutralizing Antibodies , Emulsions , Humans , Mice , Peptides , Rabbits , Squalene , Vaccines, Conjugate , Vaccines, Subunit
8.
J Immunol ; 207(5): 1333-1343, 2021 09 01.
Article En | MEDLINE | ID: mdl-34408012

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.


Killer Cells, Natural/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Acute Disease , Cells, Cultured , Cohort Studies , Female , Humans , Interferon-gamma/metabolism , Interleukin-12/metabolism , Lymphocyte Activation , Pregnancy , Receptors, KIR3DL1/metabolism , STAT5 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Front Immunol ; 12: 633658, 2021.
Article En | MEDLINE | ID: mdl-34012432

Systemic lupus erythematosus (SLE) is a severe autoimmune disease of unknown etiology. The major histocompatibility complex (MHC) class I-related chain A (MICA) and B (MICB) are stress-inducible cell surface molecules. MICA and MICB label malfunctioning cells for their recognition by cytotoxic lymphocytes such as natural killer (NK) cells. Alterations in this recognition have been found in SLE. MICA/MICB can be shed from the cell surface, subsequently acting either as a soluble decoy receptor (sMICA/sMICB) or in CD4+ T-cell expansion. Conversely, NK cells are frequently defective in SLE and lower NK cell numbers have been reported in patients with active SLE. However, these cells are also thought to exert regulatory functions and to prevent autoimmunity. We therefore investigated whether, and how, plasma membrane and soluble MICA/B are modulated in SLE and whether they influence NK cell activity, in order to better understand how MICA/B may participate in disease development. We report significantly elevated concentrations of circulating sMICA/B in SLE patients compared with healthy individuals or a control patient group. In SLE patients, sMICA concentrations were significantly higher in patients positive for anti-SSB and anti-RNP autoantibodies. In order to study the mechanism and the potential source of sMICA, we analyzed circulating sMICA concentration in Behcet patients before and after interferon (IFN)-α therapy: no modulation was observed, suggesting that IFN-α is not intrinsically crucial for sMICA release in vivo. We also show that monocytes and neutrophils stimulated in vitro with cytokines or extracellular chromatin up-regulate plasma membrane MICA expression, without releasing sMICA. Importantly, in peripheral blood mononuclear cells from healthy individuals stimulated in vitro by cell-free chromatin, NK cells up-regulate CD69 and CD107 in a monocyte-dependent manner and at least partly via MICA-NKG2D interaction, whereas NK cells were exhausted in SLE patients. In conclusion, sMICA concentrations are elevated in SLE patients, whereas plasma membrane MICA is up-regulated in response to some lupus stimuli and triggers NK cell activation. Those results suggest the requirement for a tight control in vivo and highlight the complex role of the MICA/sMICA system in SLE.


Cell Membrane/immunology , Histocompatibility Antigens Class I/blood , Killer Cells, Natural/immunology , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation , Antibodies, Antinuclear/blood , Biomarkers/blood , Case-Control Studies , Cell Membrane/metabolism , Cells, Cultured , Humans , Killer Cells, Natural/metabolism , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nucleosomes/immunology , Nucleosomes/metabolism , Phenotype , Ribonucleoproteins/immunology , Sjogren's Syndrome/blood , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/immunology , Up-Regulation
10.
Cancers (Basel) ; 13(8)2021 Apr 12.
Article En | MEDLINE | ID: mdl-33921413

Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications arising after solid organ or hematopoietic stem cell transplantations. Although the majority of these lymphoproliferations are of B cell origin, and are frequently associated with primary Epstein-Barr virus (EBV) infection or reactivation in the post-transplant period, rare cases of T cell and natural killer (NK) cell-originated PTLDs have also been described. A general assumption is that PTLDs result from the impairment of anti-viral and anti-tumoral immunosurveillance due to the long-term use of immunosuppressants in transplant recipients. T cell impairment is known to play a critical role in the immune-pathogenesis of post-transplant EBV-linked complications, while the role of NK cells has been less investigated, and is probably different between EBV-positive and EBV-negative PTLDs. As a part of the innate immune response, NK cells are critical for protecting hosts during the early response to virus-induced tumors. The complexity of their function is modulated by a myriad of activating and inhibitory receptors expressed on cell surfaces. This review outlines our current understanding of NK cells in the pathogenesis of PTLD, and discusses their potential implications for current PTLD therapies and novel NK cell-based therapies for the containment of these disorders.

11.
Am J Transplant ; 21(8): 2846-2863, 2021 08.
Article En | MEDLINE | ID: mdl-33621411

EBV-positive and EBV-negative posttransplant lymphoproliferative disorders (PTLDs) arise in different immunovirological contexts and might have distinct pathophysiologies. To examine this hypothesis, we conducted a multicentric prospective study with 56 EBV-positive and 39 EBV-negative PTLD patients of the K-VIROGREF cohort, recruited at PTLD diagnosis and before treatment (2013-2019), and compared them to PTLD-free Transplant Controls (TC, n = 21). We measured absolute lymphocyte counts (n = 108), analyzed NK- and T cell phenotypes (n = 49 and 94), and performed EBV-specific functional assays (n = 16 and 42) by multiparameter flow cytometry and ELISpot-IFNγ assays (n = 50). EBV-negative PTLD patients, NK cells overexpressed Tim-3; the 2-year progression-free survival (PFS) was poorer in patients with a CD4 lymphopenia (CD4+ <300 cells/mm3 , p <  .001). EBV-positive PTLD patients presented a profound NK-cell lymphopenia (median = 60 cells/mm3 ) and a high proportion of NK cells expressing PD-1 (vs. TC, p = .029) and apoptosis markers (vs. TC, p < .001). EBV-specific T cells of EBV-positive PTLD patients circulated in low proportions, showed immune exhaustion (p = .013 vs. TC) and poorly recognized the N-terminal portion of EBNA-3A viral protein. Altogether, this broad comparison of EBV-positive and EBV-negative PTLDs highlight distinct patterns of immunopathological mechanisms between these two diseases and provide new clues for immunotherapeutic strategies and PTLD prognosis.


Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Organ Transplantation , Herpesvirus 4, Human , Humans , Lymphoproliferative Disorders/etiology , Organ Transplantation/adverse effects , Prospective Studies
12.
Commun Biol ; 4(1): 197, 2021 02 12.
Article En | MEDLINE | ID: mdl-33580154

In light of the recent accumulated knowledge on SARS-CoV-2 and its mode of human cells invasion, the binding of viral spike glycoprotein to human Angiotensin Converting Enzyme 2 (hACE2) receptor plays a central role in cell entry. We designed a series of peptides mimicking the N-terminal helix of hACE2 protein which contains most of the contacting residues at the binding site, exhibiting a high helical folding propensity in aqueous solution. Our best peptide-mimics are able to block SARS-CoV-2 human pulmonary cell infection with an inhibitory concentration (IC50) in the nanomolar range upon binding to the virus spike protein with high affinity. These first-in-class blocking peptide mimics represent powerful tools that might be used in prophylactic and therapeutic approaches to fight the coronavirus disease 2019 (COVID-19).


Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Peptides/pharmacology , SARS-CoV-2/physiology , Amino Acid Sequence , Cell Line , Circular Dichroism , Humans , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Protein Binding/drug effects , Protein Structure, Secondary , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
13.
Mol Psychiatry ; 26(9): 5297-5306, 2021 09.
Article En | MEDLINE | ID: mdl-33456051

Accumulating evidence majorly implicates immune dysfunction in the etiology of psychotic disorders. In particular, altered numbers and functions of natural killer (NK) cells have been described in psychosis, but interpretation has often been confounded by a number of biases, including treatment. Eighty-one first-episode psychosis (FEP) patients who subsequently received a diagnosis of either schizophrenia (SZ; n = 30) or bipolar disorder (BP; n = 31) over a five-year follow-up period were investigated for their NK cell phenotype and compared to 61 healthy controls (HCs). We found a similar proportion of CD3-CD56+ NK cells in FEP patients and HCs. The frequency of NK cells expressing the late cell activation marker HLA-DR was significantly increased in FEP patients compared to HCs, especially in patients with BP (p < 0.0001) and, to a lesser degree, in patients with SZ (p = 0.0128). Interestingly, the expression of the activating NKG2C receptor, known to be associated with infections, was higher in patients with SZ and BP than in HCs (p < 0.0001) and correlated with HLA-DR expression, altogether defining adaptive NK cells. In terms of NK cell function, we observed a suppressed capacity of SZ-derived NK cells to mount cytotoxic responses in the presence of target cells, while NK cells from patients with BP show an inability to produce IFN-γ, a cytokine pivotal to NK function. This study strongly suggests major dysfunction of NK cells in FEP with functioning impairment correlated with psychotic, manic, and depressive symptoms in subsequently diagnosed patients with SZ and BP.


Bipolar Disorder , Psychotic Disorders , Schizophrenia , Humans , Immunity, Innate , Killer Cells, Natural
14.
Braz. j. infect. dis ; 24(5): 405-411, Sept.-Oct. 2020. tab, graf
Article En | LILACS, ColecionaSUS | ID: biblio-1142555

Abstract Several major epidemics of Zika fever, caused by the ZIKA virus (ZIKV), have emerged in Brazil since early 2015, eventually spreading to other countries on the South American continent. The present study describes the clinical manifestations and laboratory findings of patients with confirmed acute ZIKV infection during the first epidemic that occurred in Salvador, Brazil. All included patients were seen at the emergency room of a private tertiary hospital located in Salvador, Brazil from 2015 through 2017. Patients were considered eligible if signs of systemic viral febrile disease were present. All individuals were tested for ZIKV and Chikungunya infection using PCR, while rapid test was used to detect Dengue virus antibodies or, alternatively, the NS1 antigen. A diagnosis of acute ZIKV infection was confirmed in 78/434 (18%) individuals with systemic viral febrile illness. Positivity was mainly observed in blood, followed by saliva and urine. Coinfection with Chikungunya and/or Dengue virus was detected in 5% of the ZIKV-infected patients. The most frequent clinical findings were myalgia, arthralgia and low-grade fever. Laboratory analysis demonstrated normal levels of hematocrit, platelets and liver enzymes. In summary, in acute settings where molecular testing remains unavailable, clinicians face difficulties to confirm the diagnosis of ZIKV infection, as they rely only on clinical examinations and conventional laboratory tests.


Humans , Chikungunya virus , Dengue , Dengue Virus , Epidemics , Chikungunya Fever , Zika Virus , Zika Virus Infection , Brazil/epidemiology , Dengue/epidemiology , Chikungunya Fever/epidemiology , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
15.
Braz J Infect Dis ; 24(5): 405-411, 2020.
Article En | MEDLINE | ID: mdl-32941805

Several major epidemics of Zika fever, caused by the ZIKA virus (ZIKV), have emerged in Brazil since early 2015, eventually spreading to other countries on the South American continent. The present study describes the clinical manifestations and laboratory findings of patients with confirmed acute ZIKV infection during the first epidemic that occurred in Salvador, Brazil. All included patients were seen at the emergency room of a private tertiary hospital located in Salvador, Brazil from 2015 through 2017. Patients were considered eligible if signs of systemic viral febrile disease were present. All individuals were tested for ZIKV and Chikungunya infection using PCR, while rapid test was used to detect Dengue virus antibodies or, alternatively, the NS1 antigen. A diagnosis of acute ZIKV infection was confirmed in 78/434 (18%) individuals with systemic viral febrile illness. Positivity was mainly observed in blood, followed by saliva and urine. Coinfection with Chikungunya and/or Dengue virus was detected in 5% of the ZIKV-infected patients. The most frequent clinical findings were myalgia, arthralgia and low-grade fever. Laboratory analysis demonstrated normal levels of hematocrit, platelets and liver enzymes. In summary, in acute settings where molecular testing remains unavailable, clinicians face difficulties to confirm the diagnosis of ZIKV infection, as they rely only on clinical examinations and conventional laboratory tests.


Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Epidemics , Zika Virus Infection , Zika Virus , Brazil/epidemiology , Chikungunya Fever/epidemiology , Dengue/epidemiology , Humans , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
16.
Front Immunol ; 11: 1662, 2020.
Article En | MEDLINE | ID: mdl-32719687

An unprecedented outbreak of pneumonia caused by a novel coronavirus (CoV), subsequently termed COVID-19 by the World Health Organization, emerged in Wuhan City (China) in December 2019. Despite rigorous containment and quarantine efforts, the incidence of COVID-19 continues to expand, causing explosive outbreaks in more than 160 countries with waves of morbidity and fatality, leading to significant public health problems. In the past 20 years, two additional epidemics caused by CoVs have occurred: severe acute respiratory syndrome-CoV, which has caused a large-scale epidemic in China and 24 other countries; and respiratory syndrome-CoV of the Middle East in Saudi Arabia, which continues to cause sporadic cases. All of these viruses affect the lower respiratory tract and manifest as pneumonia in humans, but the novel SARS-Cov-2 appears to be more contagious and has spread more rapidly worldwide. This mini-review focuses on the cellular immune response to COVID-19 in human subjects, compared to other clinically relevant coronaviruses to evaluate its role in the control of infection and pathogenesis and accelerate the development of a preventive vaccine or immune therapies.


Betacoronavirus/immunology , Coronavirus Infections , Epidemics , Immunity, Cellular , Immunotherapy , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , SARS-CoV-2
18.
Eur J Immunol ; 50(3): 342-352, 2020 03.
Article En | MEDLINE | ID: mdl-31743425

Dengue virus (DENV) is the most widespread arbovirus worldwide and is responsible for major outbreaks. The host's immune response plays a crucial role in controlling this infection but might also contribute to the promotion of viral spread and immunopathology. In response to DENV infection, NK cells preferentially produce cytokines and are cytotoxic in the presence of specific antibodies. Here, we identified that DENV-2 inhibits glycogen synthase kinase 3 (GSK-3) activity to subsequently induce MHC class-1-related chain (MIC) A and MIC-B expression and IL-12 production in monocyte-derived DCs, independently of the STAT-3 pathway. The inhibition of GSK-3 by DENV-2 or small molecules induced MIC-A/B expression on monocyte-derived DCs, resulting in autologous NK cells of a specific increase in IFN-γ and TNF-α production, in the absence of direct cytotoxicity. Together, these findings identified GSK-3 as a regulator of MIC-A/B expression and suggested its role in DENV-2 infection to specifically induce cytokine production by NK cells.


Dengue/immunology , Glycogen Synthase Kinase 3/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Cells, Cultured , Cytokines/biosynthesis , Humans
19.
PLoS One ; 14(10): e0224211, 2019.
Article En | MEDLINE | ID: mdl-31639143

Kidney transplant recipients (KTRs) abnormally replicate the Epstein Barr Virus (EBV). To better understand how long-term immunosuppression impacts the immune control of this EBV re-emergence, we systematically compared 10 clinically stable KTRs to 30 healthy controls (HCs). The EBV-specific T cell responses were determined in both groups by multiparameter flow cytometry with intra cellular cytokine staining (KTRs n = 10; HCs n = 15) and ELISpot-IFNγ assays (KTRs n = 7; HCs n = 7). The T/B/NK cell counts (KTRs n = 10; HCs n = 30) and the NK/T cell differentiation and activation phenotypes (KTRs n = 10; HCs n = 15/30) were also measured. We show that in KTRs, the Th1 effector CD4+ T cell responses against latent EBV proteins are weak (2/7 responders). Conversely, the frequencies total EBV-specific CD8+T cells are conserved in KTRs (n = 10) and span a wider range of EBNA-3A peptides (5/7responders) than in HCs (5/7responders). Those modifications of the EBV-specific T cell response were associated with a profound CD4+ T cell lymphopenia in KTRs compared to HCs, involving the naïve CD4+ T cell subset, and a persistent activation of highly-differentiated senescent CD8+ T cells. The proportion of total NK / CD8+ T cells expressing PD-1 was also increased in KTRs. Noteworthy, PD-1 expression on CD8+ T cells normalized with time after transplantation. In conclusion, we show modifications of the EBV-specific cellular immunity in long term transplant recipients. This may be the result of both persistent EBV antigenic stimulation and profound immunosuppression induced by anti-rejection treatments. These findings provide new insights into the immunopathology of EBV infection after renal transplantation.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Kidney Transplantation/adverse effects , Lymphopenia/etiology , Transplant Recipients/statistics & numerical data , Adult , Aged , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , Female , France/epidemiology , Humans , Lymphopenia/pathology , Male , Middle Aged , Retrospective Studies
20.
Vaccines (Basel) ; 7(3)2019 Sep 02.
Article En | MEDLINE | ID: mdl-31480779

HIV-1 is responsible for a global pandemic of 35 million people and continues to spread at a rate of >2 million new infections/year. It is widely acknowledged that a protective vaccine would be the most effective means to reduce HIV-1 spread and ultimately eliminate the pandemic, whereas a therapeutic vaccine might help to mitigate the clinical course of the disease and to contribute to virus eradication strategies. However, despite more than 30 years of research, we do not have a vaccine capable of protecting against HIV-1 infection or impacting on disease progression. This, in part, denotes the challenge of identifying immunogens and vaccine modalities with a reduced risk of failure in late stage development. However, progress has been made in epitope identification for the induction of broadly neutralizing antibodies. Thus, peptide-based vaccination has become one of the challenges of this decade. While some researchers reconstitute envelope protein conformation and stabilization to conserve the epitope targeted by neutralizing antibodies, others have developed strategies based on peptide-carrier vaccines with a similar goal. Here, we will review the major peptide-carrier based approaches in the vaccine field and their application and recent development in the HIV-1 field.

...