Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
2.
J Neurol ; 270(12): 5849-5865, 2023 Dec.
Article En | MEDLINE | ID: mdl-37603075

BACKGROUND: The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS: We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS: Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS: Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.


Muscle, Skeletal , Muscular Diseases , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/diagnostic imaging , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation/genetics , Magnetic Resonance Imaging/methods , Valosin Containing Protein/genetics
3.
Neurol Genet ; 9(5): e200093, 2023 Oct.
Article En | MEDLINE | ID: mdl-37588275

Background and Objectives: Pathogenic variants in the valosin-containing protein (VCP) gene cause a phenotypically heterogeneous disorder that includes myopathy, motor neuron disease, Paget disease of the bone, frontotemporal dementia, and parkinsonism termed multisystem proteinopathy. This hallmark pleiotropy makes the classification of novel VCP variants challenging. This retrospective study describes and assesses the effect of 19 novel or nonpreviously clinically characterized VCP variants identified in 28 patients (26 unrelated families) in the retrospective VCP International Multicenter Study. Methods: A 6-item clinical score was developed to evaluate the phenotypic level of evidence to support the pathogenicity of the novel variants. Each item is allocated a value, a score ranging from 0.5 to 5.5 points. A receiver-operating characteristic curve was used to identify a cutoff value of 3 to consider a variant as high likelihood disease associated. The scoring system results were confronted with results of in vitro ATPase activity assays and with in silico analysis. Results: All variants were missense, except for one small deletion-insertion, 18 led to amino acid changes within the N and D1 domains, and 13 increased the enzymatic activity. The clinical score coincided with the functional studies in 17 of 19 variants and with the in silico analysis in 12 of 19. For 12 variants, the 3 predictive tools agreed, and for 7 variants, the predictive tools disagreed. The pooled data supported the pathogenicity of 13 of 19 novel VCP variants identified in the study. Discussion: This study provides data to support pathogenicity of 14 of 19 novel VCP variants and provides guidance for clinicians in the evaluation of novel variants in the VCP gene.

4.
Ann Clin Transl Neurol ; 10(5): 686-695, 2023 05.
Article En | MEDLINE | ID: mdl-37026610

Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.


Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Proteostasis Deficiencies , Humans , Valosin Containing Protein/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/therapy , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy , Phenotype
5.
J Neuromuscul Dis ; 10(1): 125-133, 2023.
Article En | MEDLINE | ID: mdl-36373293

We report three siblings from a non-consanguineous family presenting with contractural limb-girdle phenotype with intrafamilial variability. Muscle MRI showed posterior thigh and quadriceps involvement with a sandwich-like sign. Whole-exome sequencing identified two compound heterozygous missense TTN variants and one heterozygous LAMA2 variant. Brain MRI performed because of concentration difficulties in one of the siblings evidenced white-matter abnormalities, subsequently found in the others. The genetic analysis was re-oriented, revealing a novel pathogenic intronic LAMA2 variant which confirmed the LAMA2-RD diagnosis. This work highlights the importance of a thorough clinical phenotyping and the importance of brain imaging, in order to orientate and interpret the genetic analysis.


Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Humans , Muscular Dystrophies, Limb-Girdle/diagnostic imaging , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies/diagnostic imaging , Muscular Dystrophies/genetics , Brain/diagnostic imaging , Brain/pathology , Genetic Testing , Neuroimaging
6.
Neuromuscul Disord ; 32(11-12): 870-878, 2022 12.
Article En | MEDLINE | ID: mdl-36522822

Congenital myasthenic syndromes (CMS) are a group of heterogeneous diseases of the neuromuscular junction. We report electrodiagnostic testing (EDX) and genetic findings in a series of 120 CMS patients tested with a simple non-invasive EDX workup with surface recording of CMAPs and 3Hz repetitive nerve stimulation of accessory, radial and deep fibular nerves. Five ENMG phenotypes were retrieved based on the presence or not of R-CMAPs and the distribution pattern of decremental CMAP responses which significantly correlated with genetic findings (p <0.00001). R-CMAPs were found in all COLQ-mutated patients (CMS1A) and Slow Channel CMS (SCCMS) (CMS1B). CMS1A exhibited greater decrements in accessory nerve RNS than CMS1B. Patients without R-CMAPs were classified into CMS2A (DOK7-, MUSK-, GFPT1-, GMPPB-, TOR1AIP-mutated) when exhibiting predominant accessory nerve RNS decrements, CMS2B (CHRNE, CHRND, RAPSN) with predominant radial nerve RNS decrements, or CMS2C (AGRN) if there were predominant fibular decrements. Our algorithm may have a major impact on diagnostic and therapeutic monitoring in CMS patients, as well as for validation of the pathogenicity of genetic variants. It should also be part of the evaluation of unexplained muscle weakness or complex neuromuscular phenotypes.


Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/therapy , Neuromuscular Junction , Phenotype , Receptors, Cholinergic/genetics
7.
Article En | MEDLINE | ID: mdl-35896379

BACKGROUND: Valosin-containing protein (VCP) disease, caused by mutations in the VCP gene, results in myopathy, Paget's disease of bone (PBD) and frontotemporal dementia (FTD). Natural history and genotype-phenotype correlation data are limited. This study characterises patients with mutations in VCP gene and investigates genotype-phenotype correlations. METHODS: Descriptive retrospective international study collecting clinical and genetic data of patients with mutations in the VCP gene. RESULTS: Two hundred and fifty-five patients (70.0% males) were included in the study. Mean age was 56.8±9.6 years and mean age of onset 45.6±9.3 years. Mean diagnostic delay was 7.7±6 years. Symmetric lower limb weakness was reported in 50% at onset progressing to generalised muscle weakness. Other common symptoms were ventilatory insufficiency 40.3%, PDB 28.2%, dysautonomia 21.4% and FTD 14.3%. Fifty-seven genetic variants were identified, 18 of these no previously reported. c.464G>A (p.Arg155His) was the most frequent variant, identified in the 28%. Full time wheelchair users accounted for 19.1% with a median time from disease onset to been wheelchair user of 8.5 years. Variant c.463C>T (p.Arg155Cys) showed an earlier onset (37.8±7.6 year) and a higher frequency of axial and upper limb weakness, scapular winging and cognitive impairment. Forced vital capacity (FVC) below 50% was as risk factor for being full-time wheelchair user, while FVC <70% and being a full-time wheelchair user were associated with death. CONCLUSION: This study expands the knowledge on the phenotypic presentation, natural history, genotype-phenotype correlations and risk factors for disease progression of VCP disease and is useful to improve the care provided to patient with this complex disease.

8.
Eur J Neurol ; 29(8): 2398-2411, 2022 08.
Article En | MEDLINE | ID: mdl-35460302

BACKGROUND AND PURPOSE: Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS: A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS: Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION: Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.


Andersen Syndrome , Andersen Syndrome/diagnosis , Andersen Syndrome/genetics , Delayed Diagnosis , Humans , Mutation/genetics , Myalgia , Paralysis , Retrospective Studies
9.
Med Sci (Paris) ; 37 Hors série n° 1: 40-43, 2021 Nov.
Article Fr | MEDLINE | ID: mdl-34878394

JAG2 has recently been involved in autosomal recessive forms of muscular dystrophy as illustrated in this clinical vignette. In many ways, this disease can mimick a COL6-related retractile myopathy including at the imaging level.


Diagnosis, Differential , Muscular Diseases , Muscular Dystrophies , Humans , Jagged-2 Protein , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics
10.
Orphanet J Rare Dis ; 16(1): 450, 2021 10 26.
Article En | MEDLINE | ID: mdl-34702344

BACKGROUND: Due to their health condition, patients with neuromuscular diseases (NMD) are at greater risk of developing serious complications with COVID-19. The objective of this study was to analyze the prevalence of COVID-19 among NMD patients and the risk factors for its impact and severity during the first wave of the pandemic. Clinical data were collected from NMD-COVID-19 patients, between March 25, 2020 and May 11, 2020 in an anonymous survey carried out by expert physicians from the French Health Care Network Filnemus. RESULTS: Physicians reported 84 patients, including: 34 with myasthenia gravis, 27 with myopathy and 23 with neuropathy. COVID-19 had no effect on NMD for 48 (58%) patients and 48 (58%) patients developed low COVID-19 severity. COVID-19 caused the death of 9 (11%) NMD patients. Diabetic patients were at greater risk of dying. Patients with diabetes, hypertension or severe forms of NMD had a higher risk of developing a moderate or severe form of COVID-19. In our cohort, corticosteroids and other immunosuppressants were not significantly associated with higher COVID-19 severity for acquired NMD. CONCLUSION: During this period, a small percentage of French NMD patients was affected by COVID-19 compared to the general French population and COVID-19 had a limited short-term effect on them. Diabetes, hypertension and a severe degree of NMD were identified as risk factors of unfavorable outcome following COVID-19. Conversely, in our cohort of patients with acquired NMD, corticosteroids or other immunosuppressants did not appear to be risk factors for more severe COVID-19.


COVID-19 , Neuromuscular Diseases , Cross-Sectional Studies , Humans , Neuromuscular Diseases/epidemiology , Pandemics , SARS-CoV-2
11.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article En | MEDLINE | ID: mdl-34204919

Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype-phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.


Carrier Proteins/genetics , Congenital Abnormalities/genetics , Neuromuscular Diseases/genetics , Transcription Factors/genetics , Congenital Abnormalities/pathology , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Multiprotein Complexes/genetics , Mutation , Neuromuscular Diseases/pathology
12.
Neuromuscul Disord ; 31(8): 756-764, 2021 08.
Article En | MEDLINE | ID: mdl-34244018

Biallelic variants in PLEKHG5 have been reported so far associated with different clinical phenotypes including Lower motor neuron disease (LMND) [also known as distal hereditary motor neuropathies (dHMN or HMN) or distal spinal muscular atrophy (DSMA4)] and intermediate Charcot-Marie-Tooth disease (CMT). We report four patients from two families presenting with intermediate CMT and atypical clinical and para-clinical findings. Patients presented with predominant distal weakness with none or mild sensory involvement and remain ambulant at last examination (22-36 years). Nerve conduction studies revealed, in all patients, intermediate motor nerve conduction velocities, reduced sensory amplitudes and multiple conduction blocks in upper limbs, outside of typical nerve compression sites. CK levels were strikingly elevated (1611-3867 U/L). CSF protein content was mildly elevated in two patients. Diffuse bilateral white matter lesions were detected in one patient. Genetic analysis revealed three novel frameshift variants c.1835_1860del and c.2308del (family 1) and c.104del (family 2). PLEKHG5-associated disease ranges from pure motor phenotypes with predominantly proximal involvement to intermediate CMT with predominant distal motor involvement and mild sensory symptoms. Leukoencephalopathy, elevated CK levels and the presence of conduction blocks associated with intermediate velocities in NCS are part of the phenotype and may arise suspicion of the disease, thus avoiding misdiagnosis and unnecessary therapeutics in these patients.


Charcot-Marie-Tooth Disease/genetics , Guanine Nucleotide Exchange Factors , Leukoencephalopathies/genetics , Neural Conduction/genetics , Adult , Female , Genetic Testing , Humans , Male , Phenotype , Young Adult
13.
J Neuromuscul Dis ; 8(4): 633-645, 2021.
Article En | MEDLINE | ID: mdl-33749658

BACKGROUND: Dominant and recessive autosomal pathogenic variants in the three major genes (COL6A1-A2-A3) encoding the extracellular matrix protein collagen VI underlie a group of myopathies ranging from early-onset severe conditions (Ullrich congenital muscular dystrophy) to milder forms maintaining independent ambulation (Bethlem myopathy). Diagnosis is based on the combination of clinical presentation, muscle MRI, muscle biopsy, analysis of collagen VI secretion, and COL6A1-A2-A3 genetic analysis, the interpretation of which can be challenging. OBJECTIVE: To refine the phenotypical spectrum associated with the frequent COL6A3 missense variant c.7447A>G (p.Lys2483Glu). METHODS: We report the clinical and molecular findings in 16 patients: 12 patients carrying this variant in compound heterozygosity with another COL6A3 variant, and four homozygous patients. RESULTS: Patients carrying this variant in compound heterozygosity with a truncating COL6A3 variant exhibit a phenotype consistent with COL6-related myopathies (COL6-RM), with joint contractures, proximal weakness and skin abnormalities. All remain ambulant in adulthood and only three have mild respiratory involvement. Most show typical muscle MRI findings. In five patients, reduced collagen VI secretion was observed in skin fibroblasts cultures. All tested parents were unaffected heterozygous carriers. Conversely, two out of four homozygous patients did not present with the classical COL6-RM clinical and imaging findings. Collagen VI immunolabelling on cultured fibroblasts revealed rather normal secretion in one and reduced secretion in another. Muscle biopsy from one homozygous patient showed myofibrillar disorganization and rimmed vacuoles. CONCLUSIONS: In light of our results, we postulate that the COL6A3 variant c.7447A>G may act as a modulator of the clinical phenotype. Thus, in patients with a typical COL6-RM phenotype, a second variant must be thoroughly searched for, while for patients with atypical phenotypes further investigations should be conducted to exclude alternative causes. This works expands the clinical and molecular spectrum of COLVI-related myopathies.


Collagen Type VI/genetics , Muscular Dystrophies/genetics , Procollagen/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Mutation , Phenotype , Young Adult
14.
Cell Death Differ ; 28(1): 123-138, 2021 01.
Article En | MEDLINE | ID: mdl-32661288

SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired.


Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Muscle Proteins/metabolism , Muscular Diseases/metabolism , Selenoproteins/metabolism , Adolescent , Adult , Animals , Calcium/metabolism , Child , Endoplasmic Reticulum/genetics , Energy Metabolism , Female , Homeostasis , Humans , Male , Mice , Mice, Knockout , Middle Aged , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/genetics , Muscular Diseases/genetics , Muscular Diseases/pathology , Oxidation-Reduction , Selenoproteins/genetics , Young Adult
15.
Neurology ; 95(11): e1512-e1527, 2020 09 15.
Article En | MEDLINE | ID: mdl-32796131

OBJECTIVE: To clarify the prevalence, long-term natural history, and severity determinants of SEPN1-related myopathy (SEPN1-RM), we analyzed a large international case series. METHODS: Retrospective clinical, histologic, and genetic analysis of 132 pediatric and adult patients (2-58 years) followed up for several decades. RESULTS: The clinical phenotype was marked by severe axial muscle weakness, spinal rigidity, and scoliosis (86.1%, from 8.9 ± 4 years), with relatively preserved limb strength and previously unreported ophthalmoparesis in severe cases. All patients developed respiratory failure (from 10.1±6 years), 81.7% requiring ventilation while ambulant. Histopathologically, 79 muscle biopsies showed large variability, partly determined by site of biopsy and age. Multi-minicores were the most common lesion (59.5%), often associated with mild dystrophic features and occasionally with eosinophilic inclusions. Identification of 65 SEPN1 mutations, including 32 novel ones and the first pathogenic copy number variation, unveiled exon 1 as the main mutational hotspot and revealed the first genotype-phenotype correlations, bi-allelic null mutations being significantly associated with disease severity (p = 0.017). SEPN1-RM was more severe and progressive than previously thought, leading to loss of ambulation in 10% of cases, systematic functional decline from the end of the third decade, and reduced lifespan even in mild cases. The main prognosis determinants were scoliosis/respiratory management, SEPN1 mutations, and body mass abnormalities, which correlated with disease severity. We propose a set of severity criteria, provide quantitative data for outcome identification, and establish a need for age stratification. CONCLUSION: Our results inform clinical practice, improving diagnosis and management, and represent a major breakthrough for clinical trial readiness in this not so rare disease.


Genotype , Muscle Proteins/genetics , Muscular Diseases/diagnostic imaging , Muscular Diseases/genetics , Selenoproteins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Male , Middle Aged , Muscular Diseases/pathology , Retrospective Studies , Young Adult
16.
Neuromuscul Disord ; 30(7): 576-582, 2020 07.
Article En | MEDLINE | ID: mdl-32586600

We report seven Charcot-Marie-Tooth 4B1 (CMT4B1) patients from four families with distinctive features, presenting with severe distal weakness and cranial nerve involvement. Patient from family 1 presented with congenital varus foot deformity, progressive distal and proximal weakness leading to loss of ambulation at 14 years, bilateral facial palsy and prominent bulbar involvement. In three siblings from family 2, still ambulant in the second decade, neuropathy was associated with marked sweating and Arnold-Chiari syndrome. Patient from family 3, wheelchair-bound by 17 years, suffered from recurrent intestinal occlusion due to a mesenteric malformation. Patients from family 4, wheelchair-bound from age 6 years, were first diagnosed with type 1 Usher syndrome with congenital deafness and retinitis pigmentosa. CMT4B1 diagnosis was based upon suggestive clinical features and confirmed by the presence of recessive mutations in the MTMR2 gene. Our results expand the genetic and phenotypic spectrum of CMT4B1, which may include autonomic system involvement.


Charcot-Marie-Tooth Disease/diagnosis , Disease Progression , Adolescent , Adult , Charcot-Marie-Tooth Disease/genetics , Female , Humans , Male , Mutation , Phenotype , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Young Adult
17.
Med Sci (Paris) ; 36 Hors série n° 2: 28-33, 2020 Dec.
Article Fr | MEDLINE | ID: mdl-33427633

Mutations in the FKRP gene encoding the fukutin-related protein (FKRP) cause a wide spectrum of myopathies, ranging from severe forms of congenital muscular dystrophies associated with structural abnormalities of the central nervous system, to exertional myalgia or asymptomatic hyperCKemia, and to a form of limb girdle muscular dystrophy, LGMD-R9, (ex-LGMD-2I). LGMD-R9 is characterized by a proximal girdle deficit predominantly in the lower limbs to start with, with respiratory and cardiac damage that may affect the vital prognosis. Serum CK levels are markedly elevated and, on muscle biopsy, is detected a dystrophic formula associated with a reduction in the glycosylation of α-dystroglycan by immunostains and immunoblotting. Muscle MRI typically shows damage to proximal muscles (iliopsoas, adductors, gluteus maximus, quadriceps) with relative preservation of the muscles of the anterior compartment of the thighs (gracilis and sartorius). Genetic analysis, by specific sequencing of the FKRP gene or of a panel grouping together all the genes involved in the glycosylation of α-dystroglycan, or a larger panel of genes, generally confirms the diagnosis, the most frequent mutation being the missense p.(Leu276Ile). Currently, treatment of LGMD-R9 is symptomatic, requiring a multidisciplinary approach. A prospective study of the natural history of the disease is currently underway in Europe (GNT-015-FKRP). New therapeutic approaches are envisaged, such as gene therapy mediated by vectors derived from the adeno-associated virus (AAV). This is effective in animal models, allowing correction of defects in the glycosylation of alpha-dystroglycan and an increase in its binding capacity to the extracellular matrix. At the same time, preclinical studies have shown, in an animal model, the efficacy of ribitol, an alcohol pentose found in natural compounds, which has led to a phase I trial whose clinical development is underway.


TITLE: La dystrophie musculaire des ceintures de type R9 liée au gène FKRP - État des lieux et perspectives thérapeutiques. ABSTRACT: Les mutations du gène FKRP codant la fukutin-related protein (FKRP) sont à l'origine d'un large éventail de myopathies allant de formes sévères de dystrophies musculaires congénitales associées à des anomalies structurales du système nerveux central, jusqu'à des tableaux de myalgies à l'effort ou d'hyperCKémie asymptomatique, en passant par une forme de dystrophie musculaire des ceintures, la LGMD-R9 (ex-LGMD-2I), pour limb girdle muscular dystrophy récessive de type R9. La LGMD-R9 se caractérise par un déficit proximal des ceintures prédominant initialement aux membres inférieurs, avec une atteinte respiratoire et cardiaque pouvant conditionner le pronostic vital. Le taux sérique de CPK est nettement élevé et s'accompagne, sur la biopsie musculaire, d'une formule dystrophique associée à une réduction de la glycosylation de l'α-dystroglycane visible en immunomarquage et par immunoblot. L'IRM musculaire montre typiquement une atteinte des muscles proximaux (iliopsoas, adducteurs, grands fessiers, quadriceps) avec une relative préservation des muscles de la loge antérieure des cuisses (gracilis et sartorius). L'analyse génétique, par séquençage spécifique du gène FKRP ou d'un panel regroupant l'ensemble des gènes impliqués dans la glycosylation de l'α-dystroglycane, ou bien d'un panel plus large de gènes, confirme généralement le diagnostic, la mutation la plus fréquente étant le faux-sens p.(Leu276Ile). Actuellement, le traitement de la LGMD-R9 est symptomatique, requérant une approche pluridisciplinaire. Une étude prospective d'histoire naturelle de la maladie est en cours en Europe (GNT-015-FKRP). Des approches thérapeutiques inédites sont envisagées, telles que la thérapie génique médiée par des vecteurs dérivés du virus adéno-associé (AAV). Celle-ci est efficace dans les modèles animaux, permettant une correction des défauts de glycosylation de l'a-dystroglycane et une augmentation de sa capacité de liaison à la matrice extracellulaire. En parallèle, des études précliniques ont montré, dans un modèle animal, l'efficacité du ribitol, un pentose alcool retrouvé dans des composés naturels, ce qui a conduit à un essai de phase I dont le développement clinique est en cours.


Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy , Pentosyltransferases/genetics , Animals , Diagnosis, Differential , Humans , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/epidemiology , Mutation, Missense , Ribitol/therapeutic use , Therapies, Investigational/methods , Therapies, Investigational/trends
18.
J Neuromuscul Dis ; 7(1): 69-76, 2020.
Article En | MEDLINE | ID: mdl-31796684

Muscular weakness and hypotonia may be associated with multisystem involvement giving rise to complex phenotypes, many of which are uncharacterized. We report a patient presenting with congenital hypotonia and severe ocular and brain abnormalities, evoking a Muscle Eye Brain disease (MEB). She had global muscular weakness, hypotonia and amyotrophy, joint hyperlaxity, kyphoscoliosis, respiratory insufficiency, dysmorphic features and severe intellectual disability. Brain MRI showed cortical atrophy and hypoplasia of the corpus callosum. Normal CK levels, non-progressive course and absence of dystrophic features or α-dystroglycan abnormalities on the muscle biopsy were not typical of MEB. CGH array identified a large de novo duplication in chromosome 11, including regions partially duplicated in three other patients with common clinical features. This report adds to the differential diagnosis of complex phenotypes characterized by muscular, ocular and CNS involvement and highlights the potential contribution of still unrecognized chromosomal abnormalities to these phenotypes.


Brain Diseases , Chromosomes, Human, Pair 11/genetics , Eye Diseases , Muscular Dystrophies , Brain Diseases/diagnosis , Brain Diseases/etiology , Diagnosis, Differential , Eye Diseases/diagnosis , Eye Diseases/etiology , Female , Humans , Muscular Dystrophies/complications , Muscular Dystrophies/congenital , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics
19.
Ann Neurol ; 87(2): 217-232, 2020 02.
Article En | MEDLINE | ID: mdl-31794073

OBJECTIVE: Recently, the ASC-1 complex has been identified as a mechanistic link between amyotrophic lateral sclerosis and spinal muscular atrophy (SMA), and 3 mutations of the ASC-1 gene TRIP4 have been associated with SMA or congenital myopathy. Our goal was to define ASC-1 neuromuscular function and the phenotypical spectrum associated with TRIP4 mutations. METHODS: Clinical, molecular, histological, and magnetic resonance imaging studies were made in 5 families with 7 novel TRIP4 mutations. Fluorescence activated cell sorting and Western blot were performed in patient-derived fibroblasts and muscles and in Trip4 knocked-down C2C12 cells. RESULTS: All mutations caused ASC-1 protein depletion. The clinical phenotype was purely myopathic, ranging from lethal neonatal to mild ambulatory adult patients. It included early onset axial and proximal weakness, scoliosis, rigid spine, dysmorphic facies, cutaneous involvement, respiratory failure, and in the older cases, dilated cardiomyopathy. Muscle biopsies showed multiminicores, nemaline rods, cytoplasmic bodies, caps, central nuclei, rimmed fibers, and/or mild endomysial fibrosis. ASC-1 depletion in C2C12 and in patient-derived fibroblasts and muscles caused accelerated proliferation, altered expression of cell cycle proteins, and/or shortening of the G0/G1 cell cycle phase leading to cell size reduction. INTERPRETATION: Our results expand the phenotypical and molecular spectrum of TRIP4-associated disease to include mild adult forms with or without cardiomyopathy, associate ASC-1 depletion with isolated primary muscle involvement, and establish TRIP4 as a causative gene for several congenital muscle diseases, including nemaline, core, centronuclear, and cytoplasmic-body myopathies. They also identify ASC-1 as a novel cell cycle regulator with a key role in cell proliferation, and underline transcriptional coregulation defects as a novel pathophysiological mechanism. ANN NEUROL 2020;87:217-232.


Amino Acid Transport System y+/physiology , Cell Cycle/physiology , Muscular Diseases/physiopathology , Transcription Factors/genetics , Adult , Amino Acid Transport System y+/metabolism , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts/physiology , Humans , Infant , Male , Middle Aged , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/genetics , Mutation , Pedigree , Phenotype
20.
Redox Biol ; 24: 101176, 2019 06.
Article En | MEDLINE | ID: mdl-30921636

Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.


Endoplasmic Reticulum Stress , Fatty Acids/metabolism , Insulin Resistance , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Selenoproteins/genetics , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Fatty Acids/pharmacology , Female , Glucose/metabolism , Insulin/metabolism , Male , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Muscular Diseases/etiology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Palmitates/pharmacology , Phenotype , Signal Transduction
...