Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Cell Rep ; 30(9): 2978-2988.e3, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130901

ABSTRACT

Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies.


Subject(s)
Disease Progression , Infections/pathology , Acute Disease , Adaptation, Physiological , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biosynthetic Pathways/genetics , Chinchilla , Fibrosis , Glycosyltransferases/genetics , Haemophilus influenzae/physiology , Haptoglobins/metabolism , Hemoglobins/metabolism , Inflammation/pathology , Lipopolysaccharides/biosynthesis , Otitis Media/genetics , Otitis Media/microbiology , Polymorphism, Single Nucleotide/genetics , Stromal Cells/pathology
2.
NPJ Biofilms Microbiomes ; 5(1): 33, 2019.
Article in English | MEDLINE | ID: mdl-31700653

ABSTRACT

Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.


Subject(s)
Adaptation, Physiological , Biofilms/growth & development , Haemophilus influenzae/growth & development , Haemophilus influenzae/metabolism , Heme/metabolism , Microbial Viability , Gene Expression Profiling , Iron/metabolism , Metabolism , Metabolome , Proteome/analysis
3.
PLoS Pathog ; 14(10): e1007355, 2018 10.
Article in English | MEDLINE | ID: mdl-30332468

ABSTRACT

Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM.


Subject(s)
Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Heme/deficiency , Iron Deficiencies , Otitis Media/microbiology , Virulence , Animals , Chinchilla , Disease Models, Animal , Ear, Middle/microbiology , Haemophilus Infections/metabolism , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Humans , Otitis Media with Effusion/microbiology , Phosphoric Diester Hydrolases/metabolism
4.
Dev Cell ; 2(4): 437-48, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11970894

ABSTRACT

Cell motility is regulated by extracellular cues and by intracellular factors that accumulate at sites of contact between cells and the extracellular matrix. One of these factors, focal adhesion kinase (FAK), regulates the cycle of focal adhesion formation and disassembly that is required for cell movement to occur. Recently, Wnt signaling has also been implicated in the control of cell movement in vertebrates, but the mechanism through which Wnt proteins influence motility is unclear. We demonstrate that Drosphila Wnt4 is required for cell movement and FAK regulation during ovarian morphogenesis. Dfrizzled2, Disheveled, and protein kinase C are also required. The DWnt4 cell motility pathway is distinct from both the canonical Wnt pathway and the planar polarity pathway. Our data suggest that DWnt4 facilitates motility through regulation of focal adhesions.


Subject(s)
Cell Movement/physiology , Drosophila Proteins/metabolism , Drosophila/metabolism , Glycoproteins/metabolism , Ovary/cytology , Protein-Tyrosine Kinases/metabolism , Animals , Cell Polarity/physiology , Drosophila/growth & development , Drosophila Proteins/genetics , Epithelial Cells/cytology , Female , Focal Adhesion Protein-Tyrosine Kinases , Gene Expression Regulation, Developmental , Glycoproteins/genetics , Mutation/physiology , Ovary/growth & development , Signal Transduction/physiology , Wnt Proteins
SELECTION OF CITATIONS
SEARCH DETAIL