Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Infect Drug Resist ; 17: 2541-2554, 2024.
Article in English | MEDLINE | ID: mdl-38933778

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective ß-lactam/ß-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods: The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results: Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 µg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion: Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.

2.
Sci Adv ; 10(24): eadn6331, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865451

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.


Subject(s)
Appendicitis , Inflammation , Mucosal-Associated Invariant T Cells , Humans , Appendicitis/pathology , Appendicitis/immunology , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Inflammation/pathology , Inflammation/immunology , Inflammation/metabolism , Cytokines/metabolism , Acute Disease , Lymphocyte Activation/immunology , Organoids , Cell Movement , Child , Male , Female , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Appendix/pathology , Appendix/immunology
3.
Int J Pharm ; 660: 124330, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866081

ABSTRACT

Chemodynamic therapy (CDT) is a promising strategy for cancer treatment, however, its application is restricted by low hydrogen peroxide (H2O2) concentration, insufficient reactive oxygen species (ROS) generation, and high glutathione (GSH) levels. Here, we developed an injectable thermosensitive hydrogel (DSUC-Gel) based on "sea urchin-like" copper sulfide nanoparticles (UCuS) loaded with dihydroartemisinin (DHA) and sulfasalazine (SAS) to overcome these limitations of CDT. DSUC was cleaved to release DHA, SAS and Cu2+ under acidic tumor microenvironment to enhance CDT. DHA with peroxide bridge responded to intracellular Fe2+ to alleviate H2O2 deficiency. SAS prevented GSH synthesis by targeting SLC7A11 and inhibited glutathione peroxidase (GPX4) activity to induce endogenous ferroptosis. ROS produced by Fenton-like reaction of Cu2+ promoted lipid peroxidation (LPO) accumulation to promote ferroptosis. Enhanced CDT and ferroptosis induced immunogenic cell death (ICD), promoted dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) infiltration. As a result, DSUC-Gel significantly inhibited tumor growth both in vitro and in vivo. Our study provides a novel approach for enhancing anti-tumor efficacy by combining CDT, endogenous ferroptosis and ICD.

4.
Biomed Opt Express ; 15(5): 3112-3127, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855657

ABSTRACT

Organoids, derived from human induced pluripotent stem cells (hiPSCs), are intricate three-dimensional in vitro structures that mimic many key aspects of the complex morphology and functions of in vivo organs such as the retina and heart. Traditional histological methods, while crucial, often fall short in analyzing these dynamic structures due to their inherently static and destructive nature. In this study, we leveraged the capabilities of optical coherence tomography (OCT) for rapid, non-invasive imaging of both retinal, cerebral, and cardiac organoids. Complementing this, we developed a sophisticated deep learning approach to automatically segment the organoid tissues and their internal structures, such as hollows and chambers. Utilizing this advanced imaging and analysis platform, we quantitatively assessed critical parameters, including size, area, volume, and cardiac beating, offering a comprehensive live characterization and classification of the organoids. These findings provide profound insights into the differentiation and developmental processes of organoids, positioning quantitative OCT imaging as a potentially transformative tool for future organoid research.

5.
Cell Rep ; 43(6): 114291, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823017

ABSTRACT

Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.


Subject(s)
Axons , Basic Helix-Loop-Helix Transcription Factors , Enhancer Elements, Genetic , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice , Axons/metabolism , Enhancer Elements, Genetic/genetics , Neurogenesis/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Optic Nerve/metabolism , Cell Differentiation , Gene Expression Regulation, Developmental , Retina/metabolism , Mice, Inbred C57BL , Roundabout Proteins , Receptors, Cell Surface
6.
Acta Biomater ; 182: 245-259, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38729545

ABSTRACT

Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.


Subject(s)
Glucose Oxidase , Metal-Organic Frameworks , Nitric Oxide , Wound Healing , Zinc , Wound Healing/drug effects , Animals , Zinc/chemistry , Zinc/pharmacology , Nitric Oxide/metabolism , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Glucose Oxidase/pharmacology , Glucose Oxidase/metabolism , Diabetes Mellitus, Experimental/pathology , Cellular Microenvironment/drug effects , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Staphylococcus aureus/drug effects , Biofilms/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Arginine/pharmacology , Arginine/chemistry
7.
mSystems ; 9(6): e0138523, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38752789

ABSTRACT

A dysfunction of human host genes and proteins in coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor impacting clinical symptoms and outcomes. Yet, a detailed understanding of human host immune responses is still incomplete. Here, we applied RNA sequencing to 94 samples of COVID-19 patients with and without hematological tumors as well as COVID-19 uninfected non-tumor individuals to obtain a comprehensive transcriptome landscape of both hematological tumor patients and non-tumor individuals. In our analysis, we further accounted for the human-SARS-CoV-2 protein interactome, human protein interactome, and human protein complex subnetworks to understand the mechanisms of SARS-CoV-2 infection and host immune responses. Our data sets enabled us to identify important SARS-CoV-2 (non-)targeted differentially expressed genes and complexes post-SARS-CoV-2 infection in both hematological tumor and non-tumor individuals. We found several unique differentially expressed genes, complexes, and functions/pathways such as blood coagulation (APOE, SERPINE1, SERPINE2, and TFPI), lipoprotein particle remodeling (APOC2, APOE, and CETP), and pro-B cell differentiation (IGHM, VPREB1, and IGLL1) during COVID-19 infection in patients with hematological tumors. In particular, APOE, a gene that is associated with both blood coagulation and lipoprotein particle remodeling, is not only upregulated in hematological tumor patients post-SARS-CoV-2 infection but also significantly expressed in acute dead patients with hematological tumors, providing clues for the design of future therapeutic strategies specifically targeting COVID-19 in patients with hematological tumors. Our data provide a rich resource for understanding the specific pathogenesis of COVID-19 in immunocompromised patients, such as those with hematological malignancies, and developing effective therapeutics for COVID-19. IMPORTANCE: A majority of previous studies focused on the characterization of coronavirus infectious disease 2019 (COVID-19) disease severity in people with normal immunity, while the characterization of COVID-19 in immunocompromised populations is still limited. Our study profiles changes in the transcriptome landscape post-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hematological tumor patients and non-tumor individuals. Furthermore, our integrative and comparative systems biology analysis of the interactome, complexome, and transcriptome provides new insights into the tumor-specific pathogenesis of COVID-19. Our findings confirm that SARS-CoV-2 potentially tends to target more non-functional host proteins to indirectly affect host immune responses in hematological tumor patients. The identified unique genes, complexes, functions/pathways, and expression patterns post-SARS-CoV-2 infection in patients with hematological tumors increase our understanding of how SARS-CoV-2 manipulates the host molecular mechanism. Our observed differential genes/complexes and clinical indicators of normal/long infection and deceased COVID-19 patients provide clues for understanding the mechanism of COVID-19 progression in hematological tumors. Finally, our study provides an important data resource that supports the increasing value of the application of publicly accessible data sets to public health.


Subject(s)
COVID-19 , Immunocompromised Host , SARS-CoV-2 , Transcriptome , Humans , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Transcriptome/genetics , SARS-CoV-2/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Male , Female , Protein Interaction Maps/genetics , Middle Aged , Gene Expression Profiling/methods
8.
ArXiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38800655

ABSTRACT

This study introduces a groundbreaking optical coherence tomography (OCT) imaging system dedicated for high-throughput screening applications using ex vivo tissue culture. Leveraging OCT's non-invasive, high-resolution capabilities, the system is equipped with a custom-designed motorized platform and tissue detection ability for automated, successive imaging across samples. Transformer-based deep learning segmentation algorithms further ensure robust, consistent, and efficient readouts meeting the standards for screening assays. Validated using retinal explant cultures from a mouse model of retinal degeneration, the system provides robust, rapid, reliable, unbiased, and comprehensive readouts of tissue response to treatments. This fully automated OCT-based system marks a significant advancement in tissue screening, promising to transform drug discovery, as well as other relevant research fields.

9.
Article in English | MEDLINE | ID: mdl-38726971

ABSTRACT

OBJECTIVE: To compare the rehabilitative efficacy of different physiotherapy scoliosis-specific exercises (PSSE) for adolescent idiopathic scoliosis (AIS) using a network meta-analysis. DESIGN: PubMed, Cochrane Library, Web of Science, EMBASE, VIP Database for Chinese Technical Periodicals, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, and Wan Fang Data were searched until October 2023. Meta-analysis and network meta-analysis were conducted using RevMan 5.4 and R4.3.1. This study follows the PRISMA statement and was registered on the PROSPERO platform (No. CRD42022379206). RESULTS: Seventeen RCTs involving 857 patients were included. The meta-analysis showed that PSSE therapy improved Cobb's angle than conventional rehabilitation therapy (standardized mean difference [SMD] = -0.7; 95% confidence interval [CI] = -0.95, -0.44; p = 0.001), angle of trunk rotation (ATR; SMD = -1.05; 95% CI = -1.52, -0.58; p < 0.001), and quality of life (QoL; SMD = 0.61; 95% CI = 0.16, 1.07; p < 0.001). Network meta-analysis showed that Schroth + Scientific Exercise Approach to Scoliosis (SEAS) was the most effective in improving Cobb angle and ATR, while Schroth alone was most effective in improving the QoL. CONCLUSION: The combination of Schroth and SEAS improved the body posture and trunk deformity in patients with AIS, while Schroth alone improved the QoL. The effectiveness of combining different PSSE techniques supports future evidence-based research on AIS treatment.

10.
Front Public Health ; 12: 1378723, 2024.
Article in English | MEDLINE | ID: mdl-38706551

ABSTRACT

Background: Strengthening the construction of community resilience and reducing disaster impacts are on the agenda of the Chinese government. The COVID-19 pandemic could alter the existing community resilience. This study aims to explore the dynamic change trends of community resilience in China and analyze the primary influencing factors of community resilience in the context of COVID-19, as well as construct Community Resilience Governance System Framework in China. Methods: A community advancing resilience toolkit (CART) was used to conduct surveys in Guangdong, Sichuan, and Heilongjiang provinces in China in 2015 and 2022, with community resilience data and information on disaster risk awareness and disaster risk reduction behaviors of residents collected. The qualitative (in-depth interview) data from staffs of government agencies and communities (n = 15) were pooled to explore Community Resilience Governance System Framework in China. Descriptive statistics analysis and t-tests were used to investigate the dynamic development of community resilience in China. Hierarchical regression analysis was performed to explore the main influencing factors of residential community resilience with such socio-demographic characteristics as gender and age being controlled. Results: The results indicate that community resilience in China has improved significantly, presenting differences with statistical significance (p < 0.05). In 2015, connection and caring achieved the highest score, while disaster management achieved the highest score in 2022, with resources and transformative potential ranking the lowest in their scores in both years. Generally, residents presented a high awareness of disaster risks. However, only a small proportion of residents that were surveyed had participated in any "community-organized epidemic prevention and control voluntary services" (34.9%). Analysis shows that core influencing factors of community resilience include: High sensitivity towards major epidemic-related information, particular attention to various kinds of epidemic prevention and control warning messages, participation in epidemic prevention and control voluntary services, and formulation of epidemic response plans. In this study, we have constructed Community Resilience Governance System Framework in China, which included community resilience risk awareness, community resilience governance bodies, community resilience mechanisms and systems. Conclusion: During the pandemic, community resilience in China underwent significant changes. However, community capital was, is, and will be a weak link to community resilience. It is suggested that multi-stages assessments of dynamic change trends of community resilience should be further performed to analyze acting points and core influencing factors of community resilience establishment at different stages.


Subject(s)
COVID-19 , Resilience, Psychological , Humans , China/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Male , Female , Surveys and Questionnaires , Adult , Middle Aged , SARS-CoV-2 , Pandemics
11.
Aging (Albany NY) ; 16(8): 7217-7248, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38656880

ABSTRACT

AIM: In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS: Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS: Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE: These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.


Subject(s)
Hepatocytes , Liver Failure, Acute , Methyltransferases , Animals , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Liver Failure, Acute/genetics , Liver Failure, Acute/pathology , Liver Failure, Acute/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, Knockout
12.
Small ; : e2400570, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600895

ABSTRACT

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.

13.
Nature ; 629(8010): 86-91, 2024 May.
Article in English | MEDLINE | ID: mdl-38658763

ABSTRACT

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries1-6. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery7-9. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg-1). This strategy also enabled the production of FLBs with a high rate of 3,600 m h-1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of -40 °C and 80 °C and a vacuum of -0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.

14.
bioRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38659924

ABSTRACT

Current treatments targeting individual protein quality control have limited efficacy in alleviating proteinopathies, highlighting the prerequisite for a common upstream druggable target capable of global proteostasis modulation. Building on our prior research establishing nuclear speckles as pivotal organelles responsible for global proteostasis transcriptional control, we aim to alleviate proteinopathies through nuclear speckle rejuvenation. We identified pyrvinium pamoate as a small-molecule nuclear speckle rejuvenator that enhances protein quality control while suppressing YAP1 signaling via decreasing the surface tension of nuclear speckle condensates through interaction with the intrinsically disordered region of nuclear speckle scaffold protein SON. In pre-clinical models, pyrvinium pamoate reduced tauopathy and alleviated retina degeneration by promoting autophagy and ubiquitin-proteasome system. Aberrant nuclear speckle morphology, reduced protein quality control and increased YAP1 activity were also observed in human tauopathies. Our study uncovers novel therapeutic targets for tackling protein misfolding disorders within an expanded proteostasis framework encompassing nuclear speckles and YAP1.

15.
BMC Gastroenterol ; 24(1): 103, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481133

ABSTRACT

BACKGROUND: Doctors are at high risk of developing hemorrhoidal disease (HD), but it is unclear whether doctors are aware of this risk. The OASIS (dOctors AS patIentS) study was performed to examine the prevalence, awareness, diagnosis, and treatment of HD among doctors in big cities in China. METHODS: An online survey consisting of a structured questionnaire was carried out among doctors in grade-A tertiary hospitals in 29 provinces across China from August to October 2020. RESULTS: A total of 1227 questionnaire responses were collected. HD prevalence was 56.8%, with a significant difference between internists and surgeons (P = 0.01). 15.6% of doctors with HD didn't have serious concerns about the recurrence and severity of HD. 91.5% of doctors adopted general treatments, and 83.0% considered oral medications only when topical medications were ineffective. Among the oral medications, Micronized Purified Flavonoid Fraction (MPFF) was most effective based on the scores from three important parameters, but only 17% of doctors received MPFF. CONCLUSIONS: Doctors are at higher risk of developing HD with a high prevalence among Chinese doctors, but they are not fully aware or not concerned about HD. There is a deficiency in treatment recommendations and clinical management of HD even for doctors, including late initiation and inadequate oral drug therapy. Therefore, awareness and standardized treatment of HD should be improved among Chinese doctors, as well as in the general population.


Subject(s)
Hemorrhoids , Humans , Hemorrhoids/therapy , Hemorrhoids/drug therapy , Tertiary Care Centers , Cities , Surveys and Questionnaires , Internet , China/epidemiology
16.
Infect Genet Evol ; 119: 105581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432594

ABSTRACT

Alveolar echinococcosis (AE), caused by Echinococcus multilocularis, is an important zoonotic disease. Yili Prefecture in Xinjiang is endemic for AE, however the molecular variability of E. multilocularis in this region is poorly understood. In this study, 127 samples were used for haplotypes analysis, including 79 tissues from humans, 43 liver tissues from small rodents, and 5 fecal samples from dogs. Genetic variability in E. multilocularis was studied using complete sequences of the mitochondrial (mt) genes of cytochrome b (cob), NADH dehydrogenase subunit 2 (nad2), and cytochrome c oxidase subunit 1 (cox1), using a total of 3558 bp per sample. The Asia haplotype 2 (A2) was the dominant haplotype, with 72.15% (57/79) prevalence in humans, 2.33% (1/43) in small rodents, and 80.00% (4/5) in dogs, followed by A5, the second most common haplotype, which infected 27.91% (12/43) small rodents. Haplotype network analysis showed that all haplotypes clustered together with the Asian group. Pairwise fixation index (FST) values showed lower level of genetic differentiation between different regions within the country. Compared with the sequences of E. multilocularis from North America and Europe, all concatenated sequences isolated from Yili Prefecture were highly differentiated and formed a single population. The A2 haplotype, analyzed using the cob, nad2, and cox1 genes of E. multilocularis, is the predominant variant in humans and dogs in Yili Prefecture.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Humans , Dogs , Animals , Echinococcus multilocularis/genetics , Haplotypes , Echinococcosis/epidemiology , Echinococcosis/veterinary , Zoonoses , Rodentia , Cytochromes b/genetics
17.
Nano Lett ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525903

ABSTRACT

The c-axis piezoresistivity is a fundamental and important parameter of graphite, but its value near zero pressure has not been well determined. Herein, a new method for studying the c-axis piezoresistivity of van der Waals materials near zero pressure is developed on the basis of in situ scanning electron microscopy and finite element simulation. The c-axis piezoresistivity of microscale highly oriented pyrolytic graphite (HOPG) is found to show a large value of 5.68 × 10-5 kPa-1 near zero pressure and decreases by 2 orders of magnitude to the established value of ∼10-7 kPa-1 when the pressure increases to 200 MPa. By modulating the serial tunneling barrier model on the basis of the stacking faults, we describe the c-axis electrical transport of HOPG under compression. The large c-axis piezoresistivity near zero pressure and its large decrease in magnitude with pressure are attributed to the rapid stiffening of the electromechanical properties under compression.

18.
Antimicrob Agents Chemother ; 68(4): e0134623, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38426743

ABSTRACT

We evaluated the in vitro activity of meropenem-vaborbactam plus aztreonam (MEV-ATM) against 140 metallo-ß-lactamase (MBL)-producing Klebsiella pneumoniae isolates. Among them, 25 isolates (17.9%) displayed minimum inhibitory concentrations (MIC) ≥ 8 µg/mL, while 112 (80.0%) had MIC ≤ 2 µg/mL. Genomic analysis and subsequent gene cloning experiments revealed OmpK36 134-135GD-insertion and increased carbapenemase gene (blaNDM-1 and blaOXA-48-like) copy numbers are the main factors responsible for MEV-ATM non-susceptibility. Notably, MEV-ATM is actively against aztreonam-avibactam-resistant mutants due to CMY-16 mutations.


Subject(s)
Anti-Bacterial Agents , Aztreonam , Boronic Acids , Meropenem/pharmacology , Aztreonam/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , beta-Lactamases/genetics , Drug Combinations , Microbial Sensitivity Tests , Azabicyclo Compounds/pharmacology
19.
J Clin Nurs ; 33(6): 2019-2029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38439181

ABSTRACT

OBJECTIVES: To systematically evaluate the efficacy of auricular acupressure on lung function, sleep quality and quality of life in chronic obstructive pulmonary disease patients. BACKGROUND: Auricular acupressure has been increasingly used in chronic obstructive pulmonary disease patients, such as lung function and sleep quality, but the efficacy has not yet been unified. DESIGN: A meta-analysis of randomised controlled trials. METHODS: Randomised controlled trials comparing auricular acupressure intervention with non-auricular acupressure intervention in chronic obstructive pulmonary disease patients were included. We searched English databases and Chinese databases from the inception to 26 December 2022. The risk of bias was assessed by the Cochrane risk of bias tool. The PRISMA statement was used to report a meta-analysis. RESULTS: A total of 12 randomised controlled trials with 987 chronic obstructive pulmonary disease patients were included. The meta-analysis showed that auricular acupressure had significant differences in improving lung function, including FEV1 (MD = 0.29, 95% CI: 0.21 to 0.37, p < .0001), FVC (MD = 0.24, 95% CI: 0.14 to 0.34, p < .0001) and FEV1/FVC (MD = 4.70, 95% CI: 3.63 to 5.78, p < .0001). There was also a positive effect on sleep quality (MD = -0.71, 95% CI: -0.89 to -0.53, p < .0001) and quality of life (MD = -3.20, 95% CI: -3.92 to -2.49, p < .0001). CONCLUSIONS: The results indicated auricular acupressure had a positive efficacy in chronic obstructive pulmonary disease patients to improve lung function, sleep quality and quality of life, but these results should be treated with caution due to the low quality of included studies. Future researchers need to conduct more high-quality randomised controlled trials to provide a solid basis to demonstrate the efficacy of auricular acupressure in chronic obstructive pulmonary disease patients. RELEVANT TO CLINICAL PRACTICE: Auricular acupressure has the advantages of being non-invasive, convenient and without significant side effects. This review suggested auricular acupressure could be considered a non-pharmacological intervention for patients. Clinical nurses can teach chronic obstructive pulmonary disease patients to perform auricular acupressure to help self-manage complications. PATIENT OR PUBLIC CONTRIBUTION: No Patient or Public Contribution.


Subject(s)
Acupressure , Pulmonary Disease, Chronic Obstructive , Quality of Life , Randomized Controlled Trials as Topic , Humans , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/physiopathology , Acupressure/methods , Respiratory Function Tests , Sleep Quality
20.
Nature ; 626(7998): 313-318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326591

ABSTRACT

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...