Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Proc Natl Acad Sci U S A ; 121(19): e2321438121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38687782

Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader," a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.


CRISPR-Cas Systems , Cell Nucleus , Gene Editing , Genetic Therapy , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Gene Editing/methods , Animals , Mice , Muscle, Skeletal/metabolism , Cell Nucleus/metabolism , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/genetics , Humans , Nuclear Localization Signals/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Disease Models, Animal , Myoblasts/metabolism
2.
Methods Mol Biol ; 2784: 163-176, 2024.
Article En | MEDLINE | ID: mdl-38502485

RNA fluorescence in situ hybridization (FISH) is a powerful method to determine the abundance and localization of mRNA molecules in cells. While modern RNA FISH techniques allow quantification at single molecule resolution, most methods are optimized for mammalian cell culture and are not easily applied to in vivo tissue settings. Single-molecule RNA detection in skeletal muscle cells has been particularly challenging due to the thickness and high autofluorescence of adult muscle tissue and a lack of in vitro models for mature muscle cells (myofibers). Here, we present a method for isolation of adult myofibers from mouse skeletal muscle and detection of single mRNA molecules and proteins using multiplexed RNA FISH and immunofluorescence.


Muscle Fibers, Skeletal , RNA , Mice , Animals , RNA/genetics , RNA/metabolism , In Situ Hybridization, Fluorescence/methods , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fluorescent Antibody Technique , Muscle, Skeletal , Mammals
3.
bioRxiv ; 2023 Nov 06.
Article En | MEDLINE | ID: mdl-37986992

Successful CRISPR/Cas9-based gene editing in skeletal muscle is dependent on efficient propagation of Cas9 to all myonuclei in the myofiber. However, nuclear-targeted gene therapy cargos are strongly restricted to their myonuclear domain of origin. By screening nuclear localization signals and nuclear export signals, we identify "Myospreader", a combination of short peptide sequences that promotes myonuclear propagation. Appending Myospreader to Cas9 enhances protein stability and myonuclear propagation in myoblasts and myofibers. AAV-delivered Myospreader dCas9 better inhibits transcription of toxic RNA in a myotonic dystrophy mouse model. Furthermore, Myospreader Cas9 achieves higher rates of gene editing in CRISPR reporter and Duchenne muscular dystrophy mouse models. Myospreader reveals design principles relevant to all nuclear-targeted gene therapies and highlights the importance of the spatial dimension in therapeutic development.

4.
ACS Cent Sci ; 9(7): 1342-1353, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37521782

Myotonic dystrophy type 1 (DM1) is caused by a highly structured RNA repeat expansion, r(CUG)exp, harbored in the 3' untranslated region (3' UTR) of dystrophia myotonica protein kinase (DMPK) mRNA and drives disease through a gain-of-function mechanism. A panel of low-molecular-weight fragments capable of reacting with RNA upon UV irradiation was studied for cross-linking to r(CUG)expin vitro, affording perimidin-2-amine diazirine (1) that bound to r(CUG)exp. The interactions between the small molecule and RNA were further studied by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. Binding of 1 in DM1 myotubes was profiled transcriptome-wide, identifying 12 transcripts including DMPK that were bound by 1. Augmenting the functionality of 1 with cleaving capability created a chimeric degrader that specifically targets r(CUG)exp for elimination. The degrader broadly improved DM1-associated defects as assessed by RNA-seq, while having limited effects on healthy myotubes. This study (i) provides a platform to investigate molecular recognition of ligands directly in disease-affected cells; (ii) illustrates that RNA degraders can be more specific than the binders from which they are derived; and (iii) suggests that repeating transcripts can be selectively degraded due to the presence of multiple ligand binding sites.

5.
Nat Commun ; 14(1): 3427, 2023 06 09.
Article En | MEDLINE | ID: mdl-37296096

RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.


Kinesins , Myotonic Dystrophy , Humans , Kinesins/genetics , Kinesins/metabolism , Alternative Splicing , RNA/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
J Mol Biol ; 435(15): 168156, 2023 08 01.
Article En | MEDLINE | ID: mdl-37230319

Alternative splicing (AS) is a dynamic RNA processing step that produces multiple RNA isoforms from a single pre-mRNA transcript and contributes to the complexity of the cellular transcriptome and proteome. This process is regulated through a network of cis-regulatory sequence elements and trans-acting factors, most-notably RNA binding proteins (RBPs). The muscleblind-like (MBNL) and RNA binding fox-1 homolog (RBFOX) are two well characterized families of RBPs that regulate fetal to adult AS transitions critical for proper muscle, heart, and central nervous system development. To better understand how the concentration of these RBPs influences AS transcriptome wide, we engineered a MBNL1 and RBFOX1 inducible HEK-293 cell line. Modest induction of exogenous RBFOX1 in this cell line modulated MBNL1-dependent AS outcomes in 3 skipped exon events, despite significant levels of endogenous RBFOX1 and RBFOX2. Due to background RBFOX levels, we conducted a focused analysis of dose-dependent MBNL1 skipped exon AS outcomes and generated transcriptome wide dose-response curves. Analysis of this data demonstrates that MBNL1-regulated exclusion events may require higher concentrations of MBNL1 protein to properly regulate AS outcomes compared to inclusion events and that multiple arrangements of YGCY motifs can produce similar splicing outcomes. These results suggest that rather than a simple relationship between the organization of RBP binding sites and a specific splicing outcome, that complex interaction networks govern both AS inclusion and exclusion events across a RBP gradient.


Alternative Splicing , RNA-Binding Proteins , Humans , Alternative Splicing/genetics , HEK293 Cells , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Splicing , RNA Precursors/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Repressor Proteins/genetics
7.
Brain ; 146(10): 4217-4232, 2023 10 03.
Article En | MEDLINE | ID: mdl-37143315

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Myotonic Dystrophy , Humans , Female , Mice , Animals , Myotonic Dystrophy/genetics , Choroid Plexus/metabolism , Choroid Plexus/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing , RNA/genetics , Mice, Knockout , Trinucleotide Repeat Expansion
8.
Mol Cell ; 83(3): 324-329, 2023 02 02.
Article En | MEDLINE | ID: mdl-36736306

Pathogenic repeat sequences underlie several human disorders, including amyotrophic lateral sclerosis, Huntington's disease, and myotonic dystrophy. Here, we speak to several researchers about how repeat sequences have been implicated in affecting all aspects of the Central Dogma of molecular biology through their effects on DNA, RNA, and protein.


Amyotrophic Lateral Sclerosis , Huntington Disease , Myotonic Dystrophy , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Proteins/genetics , Huntington Disease/genetics , RNA/genetics , Myotonic Dystrophy/genetics , Trinucleotide Repeat Expansion/genetics
9.
J Physiol ; 601(4): 723-741, 2023 02.
Article En | MEDLINE | ID: mdl-36629254

Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.


Muscle Fibers, Skeletal , Muscle, Skeletal , Adult , Humans , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/physiology , Cell Nucleus/metabolism , RNA, Messenger/metabolism , Atrophy/metabolism , Atrophy/pathology
10.
Elife ; 112022 09 01.
Article En | MEDLINE | ID: mdl-36047761

Circadian rhythms are maintained by a cell-autonomous, transcriptional-translational feedback loop known as the molecular clock. While previous research suggests a role of the molecular clock in regulating skeletal muscle structure and function, no mechanisms have connected the molecular clock to sarcomere filaments. Utilizing inducible, skeletal muscle specific, Bmal1 knockout (iMSBmal1-/-) mice, we showed that knocking out skeletal muscle clock function alters titin isoform expression using RNAseq, liquid chromatography-mass spectrometry, and sodium dodecyl sulfate-vertical agarose gel electrophoresis. This alteration in titin's spring length resulted in sarcomere length heterogeneity. We demonstrate the direct link between altered titin splicing and sarcomere length in vitro using U7 snRNPs that truncate the region of titin altered in iMSBmal1-/- muscle. We identified a mechanism whereby the skeletal muscle clock regulates titin isoform expression through transcriptional regulation of Rbm20, a potent splicing regulator of titin. Lastly, we used an environmental model of circadian rhythm disruption and identified significant downregulation of Rbm20 expression. Our findings demonstrate the importance of the skeletal muscle circadian clock in maintaining titin isoform through regulation of RBM20 expression. Because circadian rhythm disruption is a feature of many chronic diseases, our results highlight a novel pathway that could be targeted to maintain skeletal muscle structure and function in a range of pathologies.


Circadian Clocks , Muscular Diseases , Animals , Circadian Clocks/genetics , Circadian Rhythm , Connectin/genetics , Connectin/metabolism , Mice , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinases/metabolism , RNA Splicing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
eNeuro ; 9(5)2022.
Article En | MEDLINE | ID: mdl-36150891

Considerable evidence from mouse models and human postmortem brain suggests loss of Muscleblind-like protein 2 (MBNL2) function in brain is a major driver of CNS symptoms in Myotonic dystrophy type 1 (DM1). Increased hypersomnia, fatigue, and surgical complications associated with general anesthesia suggest possible sensitivity to GABAergic inhibition in DM1. To test the hypothesis that MBNL2 depletion leads to behavioral sensitivity to GABAA receptor (GABAA-R) modulation, Mbnl2 knock-out (KO) and wild-type (WT) littermates were treated with the anesthetic sevoflurane, the benzodiazepine diazepam, the imidazopyridine zolpidem, and the benzodiazepine rescue agent, flumazenil (Ro 15-1788), and assessed for various behavioral metrics. Mbnl2 KO mice exhibited delayed recovery following sevoflurane, delayed emergence and recovery from zolpidem, and enhanced sleep time at baseline that was modulated by flumazenil. A significantly higher proportion of Mbnl2 KO mice also loss their righting reflex [loss of righting reflex (LORR)] from a standard diazepam dose. We further examined whether MBNL2 depletion affects total GABAA-R mRNA subunit levels and validated RNA-sequencing data of mis-spliced Gabrg2, whose isoform ratios are known to regulate GABA sensitivity and associated behaviors. While no other GABAA-R subunit mRNA levels tested were altered in Mbnl2 KO mouse prefrontal cortex, Gabrg2S/L mRNA ratio levels were significantly altered. Taken together, our findings indicate that loss of MBNL2 function affects GABAergic function in a mouse model of myotonic dystrophy (DM1).


Myotonic Dystrophy , Animals , Diazepam/pharmacology , Disease Models, Animal , Flumazenil/pharmacology , Humans , Mice , Mice, Knockout , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , RNA , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, GABA-A , Sevoflurane , Zolpidem , gamma-Aminobutyric Acid
12.
Cell Rep ; 40(7): 111226, 2022 08 16.
Article En | MEDLINE | ID: mdl-35977479

CRISPR-Cas13 RNA endonucleases show promise for programmable RNA knockdown. However, sequence-specific binding of Cas13 unleashes non-specific bystander RNA cleavage, or collateral activity, raising concerns for experiments and therapeutic applications. Although robust in cell-free and bacterial environments, collateral activity in mammalian cells remains disputed. We investigate Cas13d collateral activity in a therapeutic context for myotonic dystrophy type 1, caused by a transcribed CTG repeat expansion. We find that, when targeting CUGn RNA in mammalian cells, Cas13d depletes endogenous and transgenic RNAs, interferes with critical cellular processes, and activates stress response and apoptosis. Collateral effects also occur when targeting abundant endogenous transcripts. To minimize collateral activity for repeat-targeting approaches, we introduce GENO, an adeno-associated virus-compatible strategy that leverages guide RNA processing to control Cas13d expression. We argue that thorough assessment of collateral activity is necessary when applying Cas13 in mammalian cells and that GENO illustrates advantages of compact regulatory systems for Cas-based gene therapies.


Gene Editing , Myotonic Dystrophy , Animals , CRISPR-Cas Systems/genetics , Homeostasis , Humans , Mammals/genetics , Myotonic Dystrophy/genetics , RNA/genetics , RNA, Guide, Kinetoplastida/genetics , Ribonucleases/genetics
13.
Hum Mol Genet ; 31(18): 3144-3160, 2022 09 10.
Article En | MEDLINE | ID: mdl-35567413

Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1-/-; Mbnl2cond/cond; Myh6-Cre+/-) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.


Myotonic Dystrophy , Alternative Splicing/genetics , Animals , Calsequestrin/genetics , DNA-Binding Proteins/genetics , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , EGF Family of Proteins/genetics , EGF Family of Proteins/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Myotonic Dystrophy/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
iScience ; 25(5): 104198, 2022 May 20.
Article En | MEDLINE | ID: mdl-35479399

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are common forms of adult onset muscular dystrophy. Pathogenesis in both diseases is largely driven by production of toxic-expanded repeat RNAs that sequester MBNL RNA-binding proteins, causing mis-splicing. Given this shared pathogenesis, we hypothesized that diamidines, small molecules that rescue mis-splicing in DM1 models, could also rescue mis-splicing in DM2 models. While several DM1 cell models exist, few are available for DM2 limiting research and therapeutic development. Here, we characterize DM1 and DM2 patient-derived fibroblasts for use in small molecule screens and therapeutic studies. We identify mis-splicing events unique to DM2 fibroblasts and common events shared with DM1 fibroblasts. We show that diamidines can partially rescue molecular phenotypes in both DM1 and DM2 fibroblasts. This study demonstrates the potential of fibroblasts as models for DM1 and DM2, which will help meet an important need for well-characterized DM2 cell models.

15.
NAR Genom Bioinform ; 4(1): lqac016, 2022 Mar.
Article En | MEDLINE | ID: mdl-35274098

In patients with myotonic dystrophy type 1 (DM1), dysregulation of RNA-binding proteins like MBNL and CELF1 leads to alternative splicing of exons and is thought to induce a return to fetal splicing patterns in adult tissues, including the central nervous system (CNS). To comprehensively evaluate this, we created an atlas of developmentally regulated splicing patterns in the frontal cortex of healthy individuals and DM1 patients, by combining RNA-seq data from BrainSpan, GTEx and DM1 patients. Thirty-four splice events displayed an inclusion pattern in DM1 patients that is typical for the fetal situation in healthy individuals. The regulation of DM1-relevant splicing patterns could partly be explained by changes in mRNA expression of the splice regulators MBNL1, MBNL2 and CELF1. On the contrary, interindividual differences in splicing patterns between healthy adults could not be explained by differential expression of these splice regulators. Our findings lend transcriptome-wide evidence to the previously noted shift to fetal splicing patterns in the adult DM1 brain as a consequence of an imbalance in antagonistic MBNL and CELF1 activities. Our atlas serves as a solid foundation for further study and understanding of the cognitive phenotype in patients.

16.
Sci Transl Med ; 13(617): eabd5991, 2021 Oct 27.
Article En | MEDLINE | ID: mdl-34705518

The most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD) is an expanded G4C2 RNA repeat [r(G4C2)exp] in chromosome 9 open reading frame 72 (C9orf72), which elicits pathology through several mechanisms. Here, we developed and characterized a small molecule for targeted degradation of r(G4C2)exp. The compound was able to selectively bind r(G4C2)exp's structure and to assemble an endogenous nuclease onto the target, provoking removal of the transcript by native RNA quality control mechanisms. In c9ALS patient­derived spinal neurons, the compound selectively degraded the mutant C9orf72 allele with limited off-targets and reduced quantities of toxic dipeptide repeat proteins (DPRs) translated from r(G4C2)exp. In vivo work in a rodent model showed that abundance of both the mutant allele harboring the repeat expansion and DPRs were selectively reduced by this compound. These results demonstrate that targeted small-molecule degradation of r(G4C2)exp is a strategy for mitigating c9ALS/FTD-associated pathologies and studying disease-associated pathways in preclinical models.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Humans , Ribonucleases
17.
Nat Commun ; 12(1): 6079, 2021 10 27.
Article En | MEDLINE | ID: mdl-34707124

While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.


Microtubules/metabolism , Muscle, Skeletal/metabolism , RNA/metabolism , Animals , Biological Transport/drug effects , Cell Differentiation , Cell Nucleus/metabolism , Computer Simulation , Mice , Molecular Imaging , Muscle Development , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Neuromuscular Junction/metabolism , Nocodazole/pharmacology , Polymerization/drug effects , Protein Biosynthesis , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Ribosomes/metabolism , Sarcomeres/metabolism
18.
Sci Rep ; 11(1): 17029, 2021 08 23.
Article En | MEDLINE | ID: mdl-34426604

Mutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.A152T tau variant was identified as a risk factor for FTD, Alzheimer's disease, and synucleinopathies. Here we used induced pluripotent stem cells (iPSC) from a patient carrying this p.A152T variant to create a robust, functional cellular assay system for probing pathophysiological tau accumulation and phosphorylation. Using stably transduced iPSC-derived neural progenitor cells engineered to enable inducible expression of the pro-neural transcription factor Neurogenin 2 (Ngn2), we generated disease-relevant, cortical-like glutamatergic neurons in a scalable, high-throughput screening compatible format. Utilizing automated confocal microscopy, and an advanced image-processing pipeline optimized for analysis of morphologically complex human neuronal cultures, we report quantitative, subcellular localization-specific effects of multiple kinase inhibitors on tau, including ones under clinical investigation not previously reported to affect tau phosphorylation. These results demonstrate the potential for using patient iPSC-derived ex vivo models of tauopathy as genetically accurate, disease-relevant systems to probe tau biochemistry and support the discovery of novel therapeutics for tauopathies.


Glutamates/metabolism , Image Processing, Computer-Assisted , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neurons/pathology , Proteomics , Tauopathies/pathology , tau Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cell Line , Humans , Induced Pluripotent Stem Cells/drug effects , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Phosphorylation/drug effects , Protein Kinases/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
...