Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
ISME J ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375018

ABSTRACT

Plastic marine debris is known to harbor a unique microbiome (termed the "plastisphere") that can be important in marine biogeochemical cycles. However, the temporal dynamics in the plastisphere and their implications for marine biogeochemistry remain poorly understood. Here, we characterized the temporal dynamics of nitrifying communities in the plastisphere of plastic ropes exposed to a mangrove intertidal zone. The 39-month colonization experiment revealed that the relative abundances of Nitrospira and Candidatus Nitrosocosmicus representatives increased over time according to 16S rRNA gene amplicon sequencing analysis. The relative abundances of amoA genes in metagenomes implied that comammox Nitrospira were the dominant ammonia oxidizers in the plastisphere, and their dominance increased over time. The relative abundances of two metagenome-assembled genomes of comammox Nitrospira also increased with time and positively correlated with extracellular polymeric substances content of the plastisphere but negatively correlated with NH4+ concentration in seawater, indicating the long-term succession of these two parameters significantly influenced the ammonia-oxidizing community in the coastal plastisphere. At the end of the colonization experiment, the plastisphere exhibited high nitrification activity, leading to the release of N2O (2.52 ng N2O N g-1) in a 3-day nitrification experiment. The predicted relative contribution of comammox Nitrospira to N2O production (17.9%) was higher than that of ammonia-oxidizing bacteria (4.8%) but lower than that of ammonia-oxidizing archaea (21.4%). These results provide evidence that from a long-term perspective, some coastal plastispheres will become dominated by comammox Nitrospira and thereby act as hotspots of ammonia oxidation and N2O production.

2.
Nat Commun ; 15(1): 8284, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333070

ABSTRACT

Delta opioid receptor (δOR) plays a pivotal role in modulating human sensation and emotion. It is an attractive target for drug discovery since, unlike Mu opioid receptor, it is associated with low risk of drug dependence. Despite its potential applications, the pharmacological properties of δOR, including the mechanisms of activation by small-molecule agonists and the complex signaling pathways it engages, as well as their relation to the potential side effects, remain poorly understood. In this study, we use cryo-electron microscopy (cryo-EM) to determine the structure of the δOR-Gi complex when bound to a small-molecule agonist (ADL5859). Moreover, we design a series of probes to examine the key receptor-ligand interaction site and identify a region involved in signaling bias. Using ADL06 as a chemical tool, we elucidate the relationship between the ß-arrestin pathway of the δOR and its biological functions, such as analgesic tolerance and convulsion activities. Notably, we discover that the ß-arrestin recruitment of δOR might be linked to reduced gastrointestinal motility. These insights enhance our understanding of δOR's structure, signaling pathways, and biological functions, paving the way for the structure-based drug discovery.


Subject(s)
Cryoelectron Microscopy , Receptors, Opioid, delta , Receptors, Opioid, delta/metabolism , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/chemistry , Humans , Animals , Drug Discovery/methods , HEK293 Cells , Signal Transduction/drug effects , beta-Arrestins/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Mice , Ligands , Protein Binding , Male , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Binding Sites , Benzamides/pharmacology , Benzamides/chemistry , Piperazines
3.
Toxics ; 12(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39058149

ABSTRACT

Microbial communities are known to play an important role in maintaining ecological balance and can be used as an indicator for assessing environmental pollution. Numerous studies have revealed that air pollution can alter the structure of microbial communities, which may increase health risks. Nevertheless, the relationships between microbial communities and particulate matter (PM) caused by air pollution in terms of health risk assessment are not well understood. This study aimed to validate the influences of PM chemical compositions on microbial communities and assess the associated health risks. Our results, based on similarity analysis, revealed that the stability structure of the microbial communities had a similarity greater than 73%. In addition, the altered richness and diversity of microbial communities were significantly associated with PM chemical compositions. Volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) exerted a positive influence on microbial communities in different environmental variables. Additionally, a stronger linear correlation was observed between hydroxyl radicals (·OH) and the richness of microbial communities. All estimated health risks from PM chemical compositions, calculated under different environmental variables, significantly exceeded the acceptable level by a factor of more than 49. Cr and 1,2-Dibromoethane displayed dual adverse effects of non-carcinogenic and carcinogenic risks. Overall, the study provides insights into the fundamental mechanisms of the variability in microbial communities driven by PM, which may support the crucial role of PM chemical compositions in the risk of microorganisms in the atmospheric environment.

4.
Sci Rep ; 14(1): 14171, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898074

ABSTRACT

The tailwater from wastewater treatment plants serves as an important water resource in arid regions, alleviating the conflict between supply and demand. However, the effects of different tailwater discharge proportions on microbial community dynamics remain unclear. In this study, we investigated the effects of different tailwater discharge proportions on the water quality and microbial community characteristics of sediments in receiving water bodies under controlled conditions (WF-1, WF-2, WF-3, WF-4, and WF-5, containing 0% tailwater + 100% natural water, 25% tailwater + 75% natural water, 50% tailwater + 50% natural water, 75% tailwater + 25% natural water, and 100% tailwater + 0% natural water, respectively). Microbial co-occurrence networks and structural equation model were used to unveil the relationship between microbial communities and their shaping factors. Results showed that distinct microbial community compositions were found in the sediments with low- (< 50%) and high- (> 50%) proportions of tailwater. Specifically, WCHB1-41 and g_4-29-1, which are involved in organic degradation-related functions, were the key genera in the high-proportion cluster. A total of 21 taxa were more abundant in the low-proportion (< 50%) cluster than that in high-proportion (> 50%). Moreover, higher modularity was observed in the low-proportion. Total phosphorus directly affected while ammonia nitrogen indirectly affected the microbial community structure. Our findings support the distinct heterogeneity of microbial communities driven by tailwater discharge in receiving water bodies, and further confirmed that high-proportion tailwater depletes sensitive microbial communities, which may be avoided through scientific management.


Subject(s)
Geologic Sediments , Microbiota , Geologic Sediments/microbiology , Wastewater/microbiology , Water Microbiology , Bacteria/classification , Bacteria/genetics , Water Quality
5.
Nature ; 624(7992): 672-681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935376

ABSTRACT

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Amines/metabolism , Amphetamine/metabolism , Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Binding Sites , Catecholamines/agonists , Catecholamines/chemistry , Catecholamines/metabolism , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/ultrastructure , Ligands , Molecular Dynamics Simulation , Mutation , Polypharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Species Specificity , Substrate Specificity
6.
Environ Pollut ; 338: 122704, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37806429

ABSTRACT

End-of-life vehicles (ELVs) dismantling sites are the notorious hotspots of chlorinated organophosphate esters (Cl-OPEs). However, the microbial-mediated dechlorination of Cl-OPEs at such sites has not yet been explored. Herein, the dechlorination products, pathways and mechanisms of tris(2-chloroethyl) phosphate (TCEP, a representative Cl-OPE) by an anaerobic enrichment culture (ZNE) from an ELVs dismantling plant were investigated. Our results showed that dechlorination of TCEP can be triggered by reductive transformation to form bis(2-chloroethyl) phosphate (BCEP), mono-chloroethyl phosphate (MCEP) and by hydrolytic dechlorination to form bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), 2-chloroethyl bis(2-hydroxyethyl) phosphate (TCEP-2OH), 2-chloroethyl (2-hydroxyethyl) hydrogen phosphate (BCEP-OH). The combination of 16S rRNA gene amplicon sequencing, quantitative real-time PCR (qPCR) and metagenomics revealed that the Dehalococcoides played an important role in the reductive transformation of TCEP to BCEP and MCEP. A high-quality metagenome-assembled genome (completeness >99% and contamination <1%) of Dehalococcoides was obtained. The sulfate-reducing bacteria harboring haloacid dehalogenase genes (had) may be responsible for the hydrolytic dechlorination of TCEP. These findings provide insights into microbial-mediated anaerobic transformation products and mechanisms of TCEP at ELVs dismantling sites, having implications for the environmental fate and risk assessment of Cl-OPEs at those sites.


Subject(s)
Flame Retardants , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Flame Retardants/analysis , Organophosphates , Phosphates/analysis , Esters , China
7.
Signal Transduct Target Ther ; 8(1): 364, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37743365

ABSTRACT

Hydroxycarboxylic acid receptor 2 (HCAR2), a member of Class A G-protein-coupled receptor (GPCR) family, plays a pivotal role in anti-lipolytic and anti-inflammatory effects, establishing it as a significant therapeutic target for treating dyslipidemia and inflammatory diseases. However, the mechanism underlying the signaling of HCAR2 induced by various types of ligands remains elusive. In this study, we elucidate the cryo-electron microscopy (cryo-EM) structure of Gi-coupled HCAR2 in complex with a selective agonist, MK-6892, resolved to a resolution of 2.60 Å. Our structural analysis reveals that MK-6892 occupies not only the orthosteric binding pocket (OBP) but also an extended binding pocket (EBP) within HCAR2. Pharmacological assays conducted in this study demonstrate that the OBP is a critical determinant for ligand selectivity among the HCARs subfamily. Moreover, we investigate the pharmacological properties of the allosteric modulator compound 9n, revealing its probe-dependent behavior on HCAR2 in response to varying orthosteric agonists. Collectively, our findings provide invaluable structural insights that contribute to a deeper understanding of the regulatory mechanisms governing HCAR2 signaling transduction mediated by both orthosteric and allosteric ligands.


Subject(s)
Biological Assay , Cyclohexanecarboxylic Acids , Cryoelectron Microscopy , Ligands
8.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37597514

ABSTRACT

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Subject(s)
Colitis , Receptors, G-Protein-Coupled , Animals , Mice , Allosteric Regulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go , Inflammation/drug therapy , Ketone Bodies , Niacin/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism
9.
J Hazard Mater ; 449: 131042, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36827725

ABSTRACT

The rapid development of agriculture increases the release of butachlor into aquatic environments. As a dominant species causing cyanobacterial blooms, Microcystis aeruginosa (M. aeruginosa) can produce microcystin and poses threats to aquatic ecosystems and human health. However, the impact of butachlor on M. aeruginosa remains unclarified. Therefore, the physiochemical responses of M. aeruginosa to butachlor were investigated, and the relevant underlying molecular mechanism was highlighted. There were no significant changes (P > 0.05) in the growth and physiology of M. aeruginosa at the low concentrations of butachlor (0-0.1 mg/L), which evidenced a high level of butachlor tolerance in Microcystis aeruginosa. For the high concentrations of butachlor (4-30 mg/L), the inhibition of photosynthetic activity, disruption of cell ultrastructure, and oxidative stress were dominant toxic effects on M. aeruginosa. Additionally, the impaired cellular integrity and lipid peroxidation may be attributed to the substantial elevations of extracellular microcystin-LR concentration. Downregulation of genes associated with photosynthesis, energy metabolism, and oxidative stress was inferred to be responsible for the growth suppression of M. aeruginosa in 30 mg/L butachlor treatment. The upregulation of gene sets involved in nitrogen metabolism may illustrate the specific effort to sustain the steady concentration of intracellular microcystin-LR. These findings dissect the response mechanism of M. aeruginosa to butachlor toxicity and provide valuable reference for the evaluation of potential risk caused by butachlor in aquatic environments.


Subject(s)
Cyanobacteria , Microcystis , Humans , Microcystis/metabolism , Ecosystem , Cyanobacteria/metabolism , Photosynthesis , Microcystins/metabolism
10.
Cell Res ; 33(4): 312-324, 2023 04.
Article in English | MEDLINE | ID: mdl-36806352

ABSTRACT

The complement system plays an important role in the innate immune response to invading pathogens. The complement fragment C5a is one of its important effector components and exerts diverse physiological functions through activation of the C5a receptor 1 (C5aR1) and associated downstream G protein and ß-arrestin signaling pathways. Dysfunction of the C5a-C5aR1 axis is linked to numerous inflammatory and immune-mediated diseases, but the structural basis for activation and biased signaling of C5aR1 remains elusive. Here, we present cryo-electron microscopy structures of the activated wild-type C5aR1-Gi protein complex bound to each of the following: C5a, the hexapeptidic agonist C5apep, and the G protein-biased agonist BM213. The structures reveal the landscape of the C5a-C5aR1 interaction as well as a common motif for the recognition of diverse orthosteric ligands. Moreover, combined with mutagenesis studies and cell-based pharmacological assays, we deciphered a framework for biased signaling using different peptide analogs and provided insight into the activation mechanism of C5aR1 by solving the structure of C5aR1I116A mutant-Gi signaling activation complex induced by C089, which exerts antagonism on wild-type C5aR1. In addition, unusual conformational changes in the intracellular end of transmembrane domain 7 and helix 8 upon agonist binding suggest a differential signal transduction process. Collectively, our study provides mechanistic understanding into the ligand recognition, biased signaling modulation, activation, and Gi protein coupling of C5aR1, which may facilitate the future design of therapeutic agents.


Subject(s)
Receptor, Anaphylatoxin C5a , Signal Transduction , Cryoelectron Microscopy , Immunity, Innate , Complement C5a/metabolism
11.
Environ Sci Technol ; 57(2): 1167-1176, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36599128

ABSTRACT

Microplastics are readily accumulated in coastal sediments, where active sulfur (S) cycling takes place. However, the effects of microplastics on S cycling in coastal sediments and their underlying mechanisms remain poorly understood. In this study, the transformation patterns of different S species in mangrove sediments amended with different microplastics and their associated microbial communities were investigated using stable isotopic analysis and metagenomic sequencing. Biodegradable poly(lactic acid) (PLA) microplastics treatment increased sulfate (SO42-) reduction to yield more acid-volatile S and elementary S, which were subsequently transformed to chromium-reducible S (CRS). The S isotope fractionation between SO42- and CRS in PLA treatment increased by 9.1‰ from days 0 to 20, which was greater than 6.8‰ in the control. In contrast, recalcitrant petroleum-based poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC) microplastics had less impact on the sulfate reduction, resulting in 7.6 and 7.7‰ of S isotope fractionation between SO42- and CRS from days 0 to 20, respectively. The pronounced S isotope fractionation in PLA treatment was associated with increased relative abundance of Desulfovibrio-related sulfate-reducing bacteria, which contributed a large proportion of the microbial genes responsible for dissimilatory sulfate reduction. Overall, these findings provide insights into the potential impacts of microplastics exposure on the biogeochemical S cycle in coastal sediments.


Subject(s)
Microplastics , Plastics , Sulfur Isotopes/analysis , Sulfur , Isotopes/analysis , Polyesters , Sulfates/analysis , Geologic Sediments/analysis
12.
Environ Res ; 223: 115083, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36529333

ABSTRACT

Coal mine water is usually recycled as supplementary water for aquatic ecosystems in arid and semiarid mining regions of China. To ensure ecosystem health, the coal mine water is rigorously treated using several processes, including reverse osmosis, to meet surface water quality standards. However, the potential environmental impacts of this management pattern on the ecological function of receiving water bodies are unclear. In this study, we built several microcosm water ecosystems to simulate the receiving water bodies. High-quality treated coal mine drainage was mixed into the model water bodies at different concentrations, and the sediment bacterial community response and functional changes were systematically investigated. The results showed that the high-quality coal mine drainage could still shape bacterial taxonomic diversity, community composition and structure, with a concentration threshold of approximately 50%. Moreover, both the Mantel test and the structural equation model indicated that the salinity fluctuation caused by the receiving of coal mine drainage was the primary factor shaping the bacterial communities. 10 core taxa in the molecular ecological network influenced by coal mine drainage were identified, with the most critical taxa being patescibacteria and g_Geothermobacter. Furthermore, the pathway of carbohydrate metabolism as well as signaling molecules and interactions was up-regulated, whereas amino acid metabolism showed the opposite trend. All results suggested that the complex physical-chemical and biochemical processes in water ecosystems may be affected by the coal mine drainage. The bacterial community response and underlying functional changes may accelerate internal nutrient cycling, which may have a potential impact on algal bloom outbreaks.


Subject(s)
Ecosystem , Mining , Bacteria , China , Coal
13.
J Environ Public Health ; 2022: 1677620, 2022.
Article in English | MEDLINE | ID: mdl-35978595

ABSTRACT

Based on the human capital theory and creativity component theory, this study empirically examines the direct effect of entrepreneurship education on employees' environment protection creativity in the workplace and the dual mediating effect of boundary-free mental model and organizational mobility preference based on 266 valid sample data. The results show that entrepreneurship and environmental protection education received in colleges and universities can significantly promote the improvement of employees' environment protection creativity. Borderless mental model and organizational mobility preference play an intermediary role between them. The impact of entrepreneurship education on creativity is expanded from college students to employees through the bridge of borderless career attitude, which effectively verifies the lag effect of entrepreneurship education in colleges and universities and the dual intermediary effect of borderless mental model and organizational mobility preference. It further expands the research on the impact of entrepreneurship education in colleges and universities and has certain theoretical value.


Subject(s)
Creativity , Entrepreneurship , Attitude , Conservation of Natural Resources , Humans , Workplace
14.
Front Psychol ; 13: 927529, 2022.
Article in English | MEDLINE | ID: mdl-35874331

ABSTRACT

Narcissistic leadership is the synthesis of narcissistic personality traits and leadership behaviors that are motivated mainly by self-interest needs and arrogant beliefs. Such leadership style has multiple effects on organizations and employees. The amplifying influence of narcissistic leadership on their subordinates has become a hot topic in the field of organizational behavior. Based on the social exchange theory and the resource conservation theory, the current study constructs a chain mediation model of narcissistic leadership affecting employees' job embeddedness with 405 corporate employees as survey respondents. The results of data analysis show that narcissistic leadership is significantly and negatively related to employees' job embeddedness; Leader-member exchange (LMX) and perceived insider status not only play a mediating role between narcissistic leadership and job embeddedness but also play a chain mediating roles in the relationship between narcissistic leadership and job embeddedness. Our findings deepen the theoretical exploration of narcissistic leadership and help all types of organizations to improve their leadership practices.

15.
ACS Omega ; 7(8): 6721-6727, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252667

ABSTRACT

Hydrothermal synthesis with an organic template of N,N,N trimethyl-1-adamantammonium hydroxide (TMAdaOH) is the most commonly used method to prepare an SSZ-13 zeolite membrane. In this paper, the synthesized membrane was treated in heated sodium chloride to remove TMAdaOH instead of calcination in air. The surface of the membrane was modified by the heated NaCl and resulted in an improved CO2/CH4 gas separation selectivity. TMAda+ in the channels of SSZ-13 zeolite decomposed completely, and the treatment time was shortened significantly compared with calcination in air. The recrystallization of zeolite reacting with heated NaCl was the possible reason for the improved gas separation performance of the membrane.

16.
Chin Med ; 17(1): 28, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193614

ABSTRACT

BACKGROUND: Melanoma is among the most aggressive types of skin malignancy and can have an unpredictable clinical course. Exploration of novel therapeutic targets and their regulators remains essential for the prevention and treatment of melanoma. METHODS: HSDL2 protein levels were examined by immunohistochemistry. The roles of HSDL2 in cell proliferation and apoptosis were identified by CCK-8 and colony formation assays. The function of HSDL2 in cell apoptosis was analysed by flow cytometry. Western blotting, cell proliferation and apoptosis and a xenograft tumour model were utilized to explore the inhibitory functions and mechanisms of CuE in melanoma. RESULTS: HSDL2 is overexpressed in melanoma and promotes melanoma progression by activating the ERK and AKT pathways. CuE could inhibit the ERK and AKT pathways by decreasing HSDL2 expression; therefore, CuE could inhibit melanoma growth in vitro and in vivo. CONCLUSION: HSDL2 may be a promising therapeutic target against melanoma, and CuE can inhibit melanoma by downregulating HSDL2 expression.

17.
Environ Sci Technol ; 56(3): 1951-1962, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35015551

ABSTRACT

Although chlorinated organophosphate esters (Cl-OPEs) have been reported to be ubiquitously distributed in various anoxic environments, little information is available on their fate under anoxic conditions. In this study, we report two Dehalococcoides-containing enrichment cultures that transformed 3.88 ± 0.22 µmol tris(2-chloroethyl) phosphate (TCEP) and 2.61 ± 0.02 µmol tris(1-chloro-2-propyl) phosphate (TCPP) within 10 days. Based on the identification of the transformed products and deuteration experiments, we inferred that TCEP may be transformed to generate bis(2-chloroethyl) phosphate and ethene via one-electron transfer (radical mechanism), followed by C-O bond cleavage. Ethene was subsequently reduced to ethane. Similarly, TCPP was transformed to form bis(1-chloro-2-propyl) phosphate and propene. 16S rRNA gene amplicon sequencing and quantitative polymerase chain reaction analysis revealed that Dehalococcoides was the predominant contributor to the transformation of TCEP and TCPP. Two draft genomes of Dehalococcoides assembled from the metagenomes of the TCEP- and TCPP-transforming enrichment cultures contained 14 and 15 putative reductive dehalogenase (rdh) genes, respectively. Most of these rdh genes were actively transcribed, suggesting that they might contribute to the transformation of TCEP and TCPP. Taken together, this study provides insights into the role of Dehalococcoides during the transformation of representative Cl-OPEs.


Subject(s)
Flame Retardants , Dehalococcoides , Esters , Flame Retardants/analysis , Organophosphates/analysis , Phosphates , RNA, Ribosomal, 16S/genetics
19.
Sci Total Environ ; 816: 151595, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774933

ABSTRACT

Reactivity of iron sulfide (FeS) towards hexabromocyclododecane (HBCD) was explored under conditions of varying temperature, pH, inorganic ion and dissolved organic matter (DOM) in this study. Results show that the reduction of HBCD by FeS has an activation energy of 29.2 kJ mol-1, suggesting that the rate-limiting step in the reduction was a surface-mediated reaction. The reduction of HBCD by FeS was a highly pH-dependent process. The optimal rate for HBCD reduction by FeS was observed at a pH of 6.2. All the tested inorganic ions suppressed the reduction of HBCD by FeS. XPS analysis confirmed that both Fe(II)-S and bulk S(-II) on FeS surface could be impacted by solution pH and inorganic ions and were responsible for the regulation of HBCD reduction. Some DOMs (i.e., fulvic acid, humic acid, salicylic acid, catechol and sodium dodecyl sulfate) were found to hinder the reduction via competing with HBCD for active sites on FeS surface. However, the presence of 2,2'-bipyridine, triton X-100 and cetyltrimethyl ammonium bromide was able to significantly enhance the rate of HBCD reduction by 5.8, 9.0 and 20 times, respectively. Different factors could influence the reduction efficiency of HBCD diastereoisomers to different extent, but not the reaction orders of HBCD diastereoisomers (α-HBCD < γ-HBCD < ß-HBCD). Moreover, FeS could completely remove HBCD diastereoisomers in sediments with multiple factors within 9 d reaction. Our results contribute to give a better understanding on the performance of FeS towards HBCD under real and complex conditions and facilitate the application of FeS in remediation sites.


Subject(s)
Hydrocarbons, Brominated , Humic Substances
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119729, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33784593

ABSTRACT

Physiologically, Fe(III) and Fe(II) is the most important redox pairs in a variety of biological and environmental procedures with its capability of transition. The detection of physiological iron, especially Fe(II), has become the recent research focus of investigations on revealing the mechanism of iron-related metabolism. In this work, we exploited a novel quinoline-derived fluorescent probe, YTP, for the detection of Fe(II). It could monitor the level of Fe(II) with a linear range of 0-2.0 equivalent and the detection limit of 0.16 µM. High selectivity from other analytes including Fe(III) and steadiness for over 24 h confirmed the practicability of YTP. YTP was further applied in real buffer systems and in cellular imaging. The probe could achieve the semi-quantitative monitoring of Fe(II) in living cells. This work provided a potential implement for the detection of Fe(II), and raised important information for further researches on the redox pairs of iron, in mechanism and in practice.


Subject(s)
Fluorescent Dyes , Quinolines , Ferric Compounds , Ions , Iron
SELECTION OF CITATIONS
SEARCH DETAIL