Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.756
1.
Food Chem ; 455: 139674, 2024 May 20.
Article En | MEDLINE | ID: mdl-38824728

The pungency of huajiao (scientifically known as Zanthoxylum bungeanum) oil (ZBO), a crucial seasoning oil, is notably influenced by storage conditions, an aspect insufficiently explored in current research. Through the use of high-performance liquid chromatography and liquid chromatography-mass spectrometry, this study systematically investigated the stability of pungent compounds in ZBO under various storage conditions. It also elucidated the degradation and transformation mechanisms of these substances when exposed to ultraviolet (UV) irradiation. The results underscore elevated temperature, light exposure, oxygen, and storage duration as pivotal factors influencing compound degradation, with UV light emerging as the primary driving force. After 48 h of UV exposure, the primary pungent compound, hydroxy-α-sanshool, experienced a significant loss of 85.49%, indicating a pronounced inclination towards isomerization and oxidation. Notably, this study reveals, for the first time, the possible degradation-transformation pattern of hydroxy-γ-sanshool: a mutual conversion with hydroxy-γ-isosanshool and isomerization to (2E,4E,8Z,10E,12Z)-N-(2-hydroxy-2-methylpropyl) tetradeca-2,4,8,10,12-pentaenamide.

2.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Article En | MEDLINE | ID: mdl-38836053

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Porphyromonas gingivalis , Animals , Male , Methylamines/metabolism , Methylamines/blood , Humans , Mice , Oxygenases/metabolism , Porphyromonas gingivalis/metabolism , Fusobacterium nucleatum/metabolism , Metabolic Networks and Pathways , Hep G2 Cells , Lipid Metabolism , Disease Models, Animal , Periodontitis/microbiology , Periodontitis/metabolism , Liver/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Mouth/microbiology
3.
Regen Ther ; 27: 191-199, 2024 Dec.
Article En | MEDLINE | ID: mdl-38840730

Introduction: Several approaches to expand human hematopoietic stem cells (HSCs) have been reported, but the ability of these methods to expand long-term hematopoietic stem cells (LT-HSCs) remains to be improved, which limits the application of HSCs-based therapies. Methods: CD34+ cells were purified from umbilical cord blood using MacsCD34 beads, and then cultured for 12 d in a serum-free medium. Flow cytometry was used to detect phenotype, cell cycle distribution, and apoptosis of the cultured cells. Colony-forming cell (CFC) assays can evaluate multi-lineage differentiation potential of HSCs. Real-time polymerase chain reaction was employed to detect the expression of genes related to self-renewal programs and antioxidant activity. DCFH-DA probes were used to evaluate intracellular production of reactive oxygen species (ROS). Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array. Results: Here, we show a combination, Nicotinamide (NAM) combined with pyrimidoindole derivative UM171, can massively expand LT-HSCs ex vivo, and the expanded cells maintained the capability of self-renewal and multilineage differentiation. Additionally, our data indicated that UM171 promoted self-renewal of HSCs by inducing HSCs entry into the cell cycle and activating Notch and Wnt pathways, but the infinite occurrence of this process may lead to mitochondrial metabolism disorder and differentiation of HSCs. NAM kept HSCs in their primitive and dormant states by reducing intracellular ROS levels and upregulating the expression of stemness related genes, so we believed that NAM can act as a brake to control the above process. Conclusions: The discovery of the synergistic effect of NAM and UM171 for expanding LT-HSCs provides a new strategy in solving the clinical issue of limited numbers of HSCs.

4.
PeerJ ; 12: e17488, 2024.
Article En | MEDLINE | ID: mdl-38827303

Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.


Apoptosis , Catechin , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoblasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Catechin/analogs & derivatives , Catechin/pharmacology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Cadmium/toxicity , Cell Differentiation/drug effects , Cell Line , Membrane Proteins
5.
BMC Biol ; 22(1): 106, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715001

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Protein Biosynthesis , RNA Editing , Retina , Animals , Mice , Retina/metabolism , Retina/embryology , Alternative Splicing , Inosine/metabolism , Inosine/genetics , Adenosine/metabolism
6.
Heliyon ; 10(10): e31002, 2024 May 30.
Article En | MEDLINE | ID: mdl-38803916

Protection of the structural and functional integrity of the blood-brain barrier (BBB) is crucial for treating ischemic stroke (IS). Hydroxysafflor yellow A (HSYA) and quercetin (Quer), two main active components in the edible and medicinal plant Carthamus tinctorius L., have been reported to exhibit neuroprotective effects. We investigated the anti-IS and BBB-protective properties of HSYA and Quer and the underlying mechanisms. They decreased neurological deficits in middle cerebral artery occlusion (MCAO) mice, while their combination showed better effects. Importantly, HSYA and Quer ameliorated BBB permeability. Their effects on reduction of both EB leakage and infarct volume were similar, which may contribute to improved locomotor activities. Moreover, HSYA and Quer showed protective effects for hCMEC/D3 monolayer against oxygen-glucose deprivation. Src, p-Src, MMP-9, and P-gp were associated with ingredients treatments. Furthermore, molecular docking and molecular dynamics simulations revealed stable and tight binding modes of ingredients with Src and P-gp. The current study supports the potential role of HSYA, Quer, and their combination in the treatment of IS by regulating BBB integrity.

7.
Front Nutr ; 11: 1296774, 2024.
Article En | MEDLINE | ID: mdl-38757129

Background: Green tea intake has been reported to improve the clinical outcomes of patients with cardiovascular diseases or cancer. It may have a certain role in the development of venous thromboembolism (VTE) among cancer patients. The current study aimed to address this issue, which has been understudied. Methods: We carried out a retrospective study to explore the role of green tea intake in cancer patients. Patients with and without green tea intake were enrolled in a 1:1 ratio by using propensity scoring matching. The primary and secondary outcomes were VTE development and mortality 1 year after cancer diagnosis, respectively. Results: The cancer patients with green tea intake (n = 425) had less VTE development (10 [2.4%] vs. 23 [5.4%], p = 0.021), VTE-related death (7 [1.6%] vs. 18 [4.2%], p = 0.026), and fatal pulmonary embolism (PE) (3 [0.7%] vs. 12 [2.8%], p = 0.019), compared with those without green tea intake (n = 425). No intake of green tea was correlated with an increase in VTE development (multivariate hazard ratio (HR) 1.758 [1.476-2.040], p < 0.001) and VTE-related mortality (HR 1.618 [1.242-1.994], p = 0.001), compared with green tea intake. Patients with green tea intake less than 525 mL per day had increased VTE development (area under the curve (AUC) 0.888 [0.829-0.947], p < 0.001; HR1.737 [1.286-2.188], p = 0.001) and VTE-related mortality (AUC 0.887 [0.819-0.954], p < 0.001; HR 1.561 [1.232-1.890], p = 0.016) than those with green tea intake more than 525 mL per day. Green tea intake caused a decrease in platelet (p < 0.001) instead of D-dimer (p = 0.297). The all-cause mortality rates were similar between green tea (39 [9.2%]) and non-green tea (48 [11.3%]) intake groups (p = 0.308), whereas the VTE-related mortality rate in the green tea intake group (7 [1.6%]) was lower than that of the non-green tea intake group (18 [4.2%]) (p = 0.026). The incidences of adverse events were similar between the green tea and non-green tea intake groups. Conclusion: In conclusion, the current study suggests that green tea intake reduces VTE development and VTE-related mortality in cancer patients, most likely through antiplatelet mechanisms. Drinking green tea provides the efficacy of thromboprophylaxis for cancer patients.

8.
Chemotherapy ; 2024 May 19.
Article En | MEDLINE | ID: mdl-38763139

INTRODUCTION: Abnormalities in splicing factors, such as mutations or deregulated expression, can lead to aberrant splicing of target genes, potentially contributing to the pathogenesis of acute myeloid leukemia (AML). Despite this, the precise mechanism underlying the abnormal alternative splicing induced by SRSF1, a splicing factor associated with poor AML prognosis, remains elusive. METHODS: Using strict splicing criteria, we globally screened for alternative splicing(AS) events in NPMc-positive and NPMc-negative AML samples from TCGA. An AS network associated with AML prognosis was then established. Functional assays, including CCK-8, flow cytometry, and Western blot, were conducted on K562 and THP-1 cells overexpressing SRSF1. Cell viability following 72-hour Omipalisib treatment was also assessed. To explore the mechanism of SRSF1-induced AS, we created a BCL2L11 miniGene with a site-specific mutation at its branch point. The AS patterns of both wild-type and mutant miniGenes were analyzed following SRSF1 overexpression in HEK-293T, along with the subcellular localization of different spliceosomes. RESULTS: SRSF1 was significantly associated with AML prognosis. Notably, its expression was markedly upregulated in refractory AML patients compared to those with a favorable chemotherapy response. Overexpression of SRSF1 promoted THP-1 cell proliferation, suppressed apoptosis, and reduced sensitivity to Omipalisib. Mechanistically, SRSF1 recognized an aberrant branch point within the BCL2L11 intron, promoting the inclusion of a cryptic exon 3, which in turn led to apoptosis arrest. CONCLUSIONS: Overexpression of SRSF1 and the resulting abnormal splicing of BCL2L11 are associated with drug resistance and poor prognosis in AML.

9.
Clin Exp Med ; 24(1): 106, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771542

Typical BCR::ABL1-negative myeloproliferative neoplasms (MPN) are mainly referred to as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofbrosis (PMF). Granulocytes in MPN patients are involved in their inflammation and form an important part of the pathophysiology of MPN patients. It has been shown that the immunophenotype of granulocytes in MPN patients is altered. We used flow cytometry to explore the immunophenotype of MPN patients and correlate it with clinical parameters. The results showed that PMF patients and PV patients had higher CD15+CD11b+ granulocytes than ET patients and normal controls. When grouped by gene mutation, changes in the granulocyte immunophenotype of MPN patients were independent of the JAK2V617F and CALR mutations. There was no significant heterogeneity in immunophenotype between ET patients and Pre-PMF, and between Overt-PMF and Pre-PMF patients. Granulocytes from some MPN patients showed an abnormal CD13/CD16 phenotype with a significant increase in mature granulocytes on molecular and cytomorphological grounds, and this abnormal pattern occurred significantly more frequently in PMF patients than in ET patients. CD15-CD11b- was negatively correlated with WBC and Hb and positively correlated with DIPSS score, whereas high CD10+ granulocytes were significantly and negatively associated with prognostic system IPSS and DIPSS scores in PMF patients. In conclusion, this study demonstrates the landscape of bone marrow granulocyte immunophenotypes in MPN patients. MPN patients, especially those with PMF, have a significant granulocyte developmental overmaturation phenotype. CD10+ granulocytes may be involved in the prognosis of PMF patients.


Flow Cytometry , Fusion Proteins, bcr-abl , Granulocytes , Immunophenotyping , Myeloproliferative Disorders , Humans , Male , Middle Aged , Female , Granulocytes/pathology , Adult , Aged , Fusion Proteins, bcr-abl/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/immunology , Myeloproliferative Disorders/pathology , Janus Kinase 2/genetics , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/pathology , Aged, 80 and over , China , Young Adult , Calreticulin/genetics , CD11b Antigen/genetics , Polycythemia Vera/genetics , Polycythemia Vera/pathology , Polycythemia Vera/immunology , Mutation , Asian People/genetics , East Asian People
10.
BMJ ; 385: e078876, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806195

OBJECTIVE: To evaluate the efficacy and safety of tislelizumab added to chemotherapy as first line (primary) treatment for advanced gastric or gastro-oesophageal junction adenocarcinoma compared with placebo plus chemotherapy. DESIGN: Randomised, double blind, placebo controlled, phase 3 study. SETTING: 146 medical centres across Asia, Europe, and North America, between 13 December 2018 and 28 February 2023. PARTICIPANTS: 1657 patients aged ≥18 years with human epidermal growth factor receptor 2 negative locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma, regardless of programmed death-ligand 1 (PD-L1) expression status, who had not received systemic anticancer therapy for advanced disease. INTERVENTIONS: Patients were randomly (1:1) assigned to receive either tislelizumab 200 mg or placebo intravenously every three weeks in combination with chemotherapy (investigator's choice of oxaliplatin and capecitabine, or cisplatin and 5-fluorouracil) and stratified by region, PD-L1 expression, presence or absence of peritoneal metastases, and investigator's choice of chemotherapy. Treatment continued until disease progression or unacceptable toxicity. MAIN OUTCOME MEASURES: The primary endpoint was overall survival, both in patients with a PD-L1 tumour area positivity (TAP) score of ≥5% and in all randomised patients. Safety was assessed in all those who received at least one dose of study treatment. RESULTS: Of 1657 patients screened between 13 December 2018 and 9 February 2021, 660 were ineligible due to not meeting the eligibility criteria, withdrawal of consent, adverse events, or other reasons. Overall, 997 were randomly assigned to receive tislelizumab plus chemotherapy (n=501) or placebo plus chemotherapy (n=496). Tislelizumab plus chemotherapy showed statistically significant improvements in overall survival versus placebo plus chemotherapy in patients with a PD-L1 TAP score of ≥5% (median 17.2 months v 12.6 months; hazard ratio 0.74 (95% confidence interval 0.59 to 0.94); P=0.006 (interim analysis)) and in all randomised patients (median 15.0 months v 12.9 months; hazard ratio 0.80 (0.70 to 0.92); P=0.001 (final analysis)). Grade 3 or worse treatment related adverse events were observed in 54% (268/498) of patients in the tislelizumab plus chemotherapy arm versus 50% (246/494) in the placebo plus chemotherapy arm. CONCLUSIONS: Tislelizumab added to chemotherapy as primary treatment for advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma provided superior overall survival with a manageable safety profile versus placebo plus chemotherapy in patients with a PD-L1 TAP score of ≥5%, and in all randomised patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT03777657.


Adenocarcinoma , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophagogastric Junction , Stomach Neoplasms , Humans , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Female , Middle Aged , Double-Blind Method , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Adult , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use
11.
Microb Pathog ; 192: 106713, 2024 May 27.
Article En | MEDLINE | ID: mdl-38810765

Newcastle disease virus (NDV) is the pathogen of a zoonosis that is primarily transmitted by poultry and has severe infectivity and a high fatality rate. Many studies have focused on the role of the NDV fusion (F) protein in the cell-cell membrane fusion process. However, little attention has been given to the heptad repeat region, HR4, which is located in the NDV F2 subunit. Here, site-directed mutants were constructed to study the function of the NDV F protein HR4 region and identify the key amino acids in this region. Nine conserved amino acids were substituted with alanine or the corresponding amino acid of other aligned paramyxoviruses. The desired mutants were examined for changes in fusogenic activity through three kinds of membrane fusion assays and expression and proteolysis through IFA, FACS and WB. The results showed that when conserved amino acids (L81, Y84, L88, L91, L92, P94, L95 and I99) were replaced with alanine, the fusogenic activity of the F protein was abolished, possibly because of failed protein expression not only on the cell surface but also inside cells. These data indicated that the conserved amino acids above in NDV F HR4 are critical for normal protein synthesis and expression, possibly for the stability of the F protein monomer, formation of trimer and conformational changes.

12.
J Agric Food Chem ; 72(19): 11205-11220, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708789

Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.


Anxiety , Autophagy , Behavior, Animal , Depression , Mice, Inbred ICR , Oxidative Stress , Pesticides , Animals , Female , Male , Mice , Autophagy/drug effects , Anxiety/chemically induced , Anxiety/physiopathology , Anxiety/metabolism , Depression/metabolism , Depression/genetics , Depression/chemically induced , Depression/physiopathology , Oxidative Stress/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Behavior, Animal/drug effects , Locomotion/drug effects , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Chlorpyrifos/toxicity , Chlorpyrifos/adverse effects
13.
Sci Rep ; 14(1): 10745, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730240

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Drug Resistance, Neoplasm , Ferroptosis , Flavonoids , Oxaliplatin , Stomach Neoplasms , Tumor Suppressor Protein p53 , Ferroptosis/drug effects , Humans , Flavonoids/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Oxaliplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Drug Synergism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic/drug effects
14.
J Craniofac Surg ; 35(4): 1209-1213, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38709059

INTRODUCTION: Primary central nervous system lymphoma (PCNSL) presents a diagnostic enigma due to the inherent absence of lymphoid tissue in the central nervous system (CNS). The hypothesis posits that lymphocytes infiltrating the CNS during inflammatory responses could represent a cellular source for PCNSL, challenging traditional understandings of its etiology. PATIENT CONCERNS: In 2 illustrative cases, patients presented with neurological symptoms initially misdiagnosed as encephalitis and demyelinating disease, respectively. These diagnoses were established based on clinical assessments and initial biopsy findings. DIAGNOSIS: Subsequent biopsies, conducted months after the first signs of disease, confirmed the diagnosis of PCNSL in both patients. Identifying CD20-positive tumor cells was pivotal, indicating a B-cell lymphoma origin. INTERVENTIONS: Treatment strategies included high-dose methotrexate chemotherapy for both patients. In addition, the second patient underwent adjuvant whole-brain radiotherapy after the chemotherapy regimen. OUTCOMES: The therapeutic approach significantly reduced tumor size in both cases, with no evidence of recurrence observed during the follow-up period. This outcome underscores the potential efficacy of the chosen interventions. CONCLUSION: In response to inflammatory lesions, lymphocyte infiltration into the CNS may serve as a pivotal origin for tumor cells in PCNSL. These cases highlight the complexity of diagnosing CNS disorders and suggest that various forms of encephalitis in the early stages could influence the prognosis of lymphoma. This insight into the cellular origins and treatment responses of PCNSL contributes to a broader understanding of its pathophysiology and management.


Central Nervous System Neoplasms , Methotrexate , Humans , Male , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/diagnosis , Female , Middle Aged , Methotrexate/therapeutic use , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/diagnosis , Aged , Diagnosis, Differential , Biopsy , Encephalitis/pathology , Encephalitis/diagnosis , Magnetic Resonance Imaging
15.
Food Chem ; 450: 139517, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38703670

The purpose of this study was to investigate the impact of high­oxygen-modified atmospheric packaging (HOMAP) on aroma changes in fresh-cut broccoli during storage and to explore its regulatory mechanisms. The results showed that HOMAP reduced the levels of undesirable aroma substances hexanoic acid, isobutyric acid, cyclopentanone and increased glucosinolate accumulation by inhibiting the expression of arogenate/prephenate dehydratase (ADT), bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase (PAT), thiosulfate/3-mercaptopyruvate Transferase (TST) to reduce the odor of fresh-cut broccoli. HOMAP inhibited the expression of respiratory metabolism related genes 6-phosphate fructokinase 1 (PFK), pyruvate kinase (PK), and NADH-ubiquinone oxidoreductase chain 6 (ND6). In HOMAP group, the low expression of phospholipase C (PLC), phospholipase A1 (PLA1), linoleate 9S-lipoxygenase 1 (LOX1) related to lipid metabolism and the high expression of naringenin 3-dioxygenase (F3H), trans-4-Hydroxycinnamate (C4H), glutaredoxin 3 (GRX3), and thioredoxin 1 (TrX1) in the antioxidant system maintained membrane stability while reducing the occurrence of membrane lipid peroxidation.


Brassica , Food Packaging , Oxygen , Brassica/chemistry , Brassica/metabolism , Food Packaging/instrumentation , Oxygen/metabolism , Oxygen/analysis , Taste , Odorants/analysis , Plant Proteins/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Storage , Food Preservation/methods
16.
Int J Biol Macromol ; 270(Pt 1): 132421, 2024 Jun.
Article En | MEDLINE | ID: mdl-38759854

This study examines the effects of flaxseed gum (FG) on the aggregate structure, pasting and rheological properties of waxy rice starch (WRS). Results display an increase in the ordered molecular structure (R1047/1024), relative crystallinity (RC), compactness (α), and microphase heterogeneity (ε, density degree of nanoaggregates, from 3.52 to 4.23) for WRS-FG complexes. These suggested FG facilitated the development of more organized molecular and crystalline structures of WRS, accompanied by the formation of ordered nanoaggregates with higher density (i.e., nano-aggregation structure). Also, FG addition resulted in the formation of enhanced gel network structure characterized by thicker layer walls and more uniform pores. These structural transformations contributed to a rise in gelatinization temperature (To, from 56.90 °C to 62.10 °C) and enthalpy (ΔH), as well as alterations in paste viscosities (PV, from 1285.00 mPa·s to 1734.00 mPa·s), and the rigidity of network structure (e.g., decreased loss tangent). These results indicate that FG could effectively regulate the techno-functional properties of WRS by rationally controlling the starch intrinsic structures of starch. And this study may improve the pasting and gelling properties of starch, thus driving the development of high-quality starchy foods and prolonging their shelf life, especially for glutinous rice flour products.


Flax , Oryza , Rheology , Starch , Oryza/chemistry , Starch/chemistry , Flax/chemistry , Plant Gums/chemistry , Temperature , Viscosity
17.
Eur J Pharmacol ; 975: 176659, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38762158

Obstructive sleep apnea syndrome (OSAS), characterized by repeated narrow or collapse of the upper airway during sleep, resulting in periodic reductions or cessations in ventilation, consequent hypoxia, hypercapnia, increased sympathetic activity and sleep fragmentation, places a serious burden on society and health care. Intermittent hypoxia (IH), which cause central nervous system (CNS) inflammation, and ultimately lead to neuropathy, is thought to be a crucial contributor to cognitive impairment in OSAS. Wnt signaling pathway exerts an important role in the regulation of CNS disorders. Particularly, it may be involved in the regulation of neuroinflammation and cognitive dysfunction. However, its underlying mechanism remains poorly understood. Accumulating evidence demonstrated that Wnt signaling pathway may inhibited in a variety of neurological disorders. Recently studies revealed that SUMOylation was participated in the regulation of neuroinflammation. Members of Wnt/ß-catenin pathway may be targets of SUMOylation. In vitro and in vivo molecular biology experiments explored the regulatory mechanism of SUMOylation on Wnt/ß-catenin in IH-induced neuroinflammation and neuronal injury, which demonstrated that IH induced the SUMOylation of ß-catenin, microglia mediated inflammation and neuronal damage. Moreover, SENP1 regulated the de-SUMOylation of ß-catenin, triggered Wnt/ß-catenin pathway, and alleviated neuroinflammation and neuronal injury, thus improving IH-related mice cognitive dysfunction.


Cognitive Dysfunction , Cysteine Endopeptidases , Hypoxia , Microglia , Sumoylation , Wnt Signaling Pathway , Animals , Microglia/metabolism , Microglia/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Mice , Cysteine Endopeptidases/metabolism , Hypoxia/complications , Hypoxia/metabolism , Male , beta Catenin/metabolism , Mice, Inbred C57BL , Neuroinflammatory Diseases/metabolism , Inflammation/metabolism , Inflammation/pathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/physiopathology , Humans , Disease Models, Animal
18.
Heliyon ; 10(9): e30651, 2024 May 15.
Article En | MEDLINE | ID: mdl-38765063

Silicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of silica. The early diagnosis and timely implementation of intervention measures are crucial in preventing silicosis deterioration further. However, the lack of screening and diagnostic measures for early-stage silicosis remains a significant challenge. In this study, silicosis models of varying severity were established through a single exposure to silica with different doses (2.5mg/mice or 5mg/mice) and durations (4 weeks or 12 weeks). The diagnostic performance of computed tomography (CT) quantitative analysis was assessed using lung density biomarkers and the lung density distribution histogram, with a particular focus on non-aerated lung volume. Subsequently, we developed and evaluated a stacking learning model for early diagnosis of silicosis after extracting and selecting features from CT images. The CT quantitative analysis reveals that while the lung densitometric biomarkers and lung density distribution histogram, as traditional indicators, effectively differentiate severe fibrosis models, they are unable to distinguish early-stage silicosis. Furthermore, these findings remained consistent even when employing non-aerated areas, which is a more sensitive indicator. By establishing a radiomics stacking learning model based on non-aerated areas, we can achieve remarkable diagnostic performance to distinguish early-stage silicosis, which can provide a valuable tool for clinical assistant diagnosis. This study reveals the potential of using non-aerated lung areas as a region of interest in stacking learning for early diagnosis of silicosis, providing new insights into early detection of this disease.

19.
Transl Pediatr ; 13(3): 417-426, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38590367

Background: The clinical manifestations of Wilms tumor and non-Wilms tumor in children are similar, and the only way to confirm the diagnosis is by postoperative pathology. Computed tomography (CT) is one of the main methods for preoperative diagnosis of the two, but it is also difficult to distinguish because it is easily affected by the subjective influence and the experience of the radiologists. Methods: The CT images of 82 children with renal tumors admitted to the Department of Pediatric Urology, Shandong Provincial Hospital from January 2011 to March 2022 were retrospectively analyzed. First, we drew the two-dimensional (2D) region of interest (ROI) of the largest cross-section on the corticomedullary phase (CMP) and nephrogenic phase (NP) images, and extracted seven types of 107 features in the ROI. Then, the texture features with similarity greater than 95% and repetition less than 90% were screened out, and the remaining texture features were further screened by analysis of variance (ANOVA) and recursive feature elimination (RFE). Finally, 15 texture feature were used to build the machine learning (ML) models. We used the synthetic minority oversampling technique (SMOTE) and 10-fold cross-validation to build ML models and verified them in the training, testing, and internal validation sets. The area under the receiver-operating characteristic curve (AUC) and calibration curve were used to evaluate the diagnostic performance. Results: We collected 77 CMP and 81 NP images, which were randomly divided into the training set and the testing set according to the ratio of 7:3. In the internal validation of CMP, the Mean-PCC-ANOVA-5-AE pipeline model achieved the highest AUC 0.792 [95% confidence interval (CI): 0.653-0.930], and its accuracy (ACC), sensitivity (SEN), and specificity (SPE) were 0.833, 0.539 and 0.927, respectively. Correspondingly, in NP, the Mean-PCC-ANOVA-2-LR pipeline model achieved the highest AUC 0.655 (95% CI: 0.485-0.82) in the internal validation. The ACC, SEN, and SPE were 0.696, 0.539, and 0.744, respectively. Conclusions: The ML models based on CT images have good diagnostic efficiency in differentiating Wilms tumors from non-Wilms tumors in children.

20.
Nat Methods ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664529

Addressing interfacial effects during specimen preparation in cryogenic electron microscopy remains challenging. Here we introduce ESI-cryoPrep, a specimen preparation method based on electrospray ionization in native mass spectrometry, designed to alleviate issues associated with protein denaturation or preferred orientation induced by macromolecule adsorption at interfaces. Through fine-tuning spraying parameters, we optimized protein integrity preservation and achieved the desired ice thickness for analyzing target macromolecules. With ESI-cryoPrep, we prepared high-quality cryo-specimens of five proteins and obtained three-dimensional reconstructions at near-atomic resolution. Our findings demonstrate that ESI-cryoPrep effectively confines macromolecules within the middle of the thin layer of amorphous ice, facilitating the preparation of blotting-free vitreous samples. The protective mechanism, characterized by the uneven distribution of charged biomolecules of varying sizes within charged droplets, prevents the adsorption of target biomolecules at air-water or graphene-water interfaces, thereby avoiding structural damage to the protein particles or the introduction of dominant orientation issues.

...