Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Adv Sci (Weinh) ; : e2403622, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264263

ABSTRACT

Hydrogel-based 3D cell cultures are extensively utilized to create biomimetic cellular microstructures. However, there is still lack of effective method for both evaluation of the complex interaction of cells with hydrogel and the functionality of the resulting micro-structures. This limitation impedes the further application of these microstructures as microphysiological models (microPMs) for the screening of potential culture condition combinations to enhance the skeletal muscle regeneration. This paper introduces a two-probe micromanipulation method for the large-scale assessment of viscoelasticity and contractile force (CF) of skeletal muscle microPMs, which are produced in high-throughput via microfluidic spinning and 96-well culture. The collected data demonstrate that viscoelasticity parameters (E* and tanδ) and CF both measured in a solution environment are indicative of the formation of cellular structures without hydrogel residue and the subsequent generation of myotubes, respectively. This study have developed screening criterias that integrate E*, tanδ, and CF to examine the effects of multifactorial interactions on muscle fiber repair under hypoxic conditions and within bioprinted bipennate muscle structures. This approach has improved the quality of hypoxic threshold evaluation and aligned cell growth in 3D. The proposed method is useful in exploring the role of different factors in muscle tissue regeneration with limited resources.

2.
Ital J Pediatr ; 50(1): 173, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256818

ABSTRACT

BACKGROUND: The cycle threshold (Ct) value is inversely proportional to the number of copies of the target region in a sample, suggesting that a low Ct value indicates a high pathogen load. The relationship between Ct value and clinical presentation in children with pertussis is not well-defined. METHODS: We investigated the relationships between the Ct value of nasopharyngeal samples positive for Bordetella pertussis deoxyribonucleic acid via real-time polymerase chain reaction (PCR), collected from children on admission and their adult family members between May 2022 and March 2024 at Hangzhou Children's Hospital, China. The study focused on the correlation between Ct value and clinical presentation in children with pertussis. RESULTS: The Ct value was positively correlated with age (r = 0.362, P = 0.001). The mean Ct value for children with pertussis was 28.0 (range: 22.0-32.0), which was lower than the 32.0 (range: 30.0-34.0) observed in adults. Ct value was inversely correlated with length of stay, an indicator of disease severity (r = -0.356, P = 0.001). Logistic regression analyses revealed that both Ct value (OR: 0.891, 95% CI: 0.799-0.993, P = 0.036) and white blood cell count (OR: 1.127, 95% CI: 1.005-1.263, P = 0.040) were independently associated with severity of pertussis. CONCLUSIONS: Real-time PCR Ct values at initial diagnosis for pertussis may potentially predict severe disease outcomes in children.


Subject(s)
Bordetella pertussis , Real-Time Polymerase Chain Reaction , Whooping Cough , Humans , Whooping Cough/diagnosis , Whooping Cough/microbiology , Bordetella pertussis/genetics , Bordetella pertussis/isolation & purification , Male , Female , Child, Preschool , Child , Infant , China , Nasopharynx/microbiology , Adolescent
3.
Small ; : e2401427, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39285822

ABSTRACT

Utilizing the thermogalvanic effect, flexible thermoelectric materials present a compelling avenue for converting heat into electricity, especially in the context of wearable electronics. However, prolonged usage is hampered by the limitation imposed on the thermoelectric device's operational time due to the evaporation of moisture. Deep eutectic solvents (DESs) offer a promising solution for low-moisture gel fabrication. In this study, a bacterial cellulose (BC)/polyacrylic acid (PAA)/guanidinium chloride (GdmCl) gel is synthesized by incorporating BC into the DES. High-performance n-type and p-type thermocells (TECs) are developed by introducing Fe(ClO4)2/3 and K3/4Fe(CN)6, respectively. BC enhances the mechanical properties through the construction of an interpenetrating network structure. The coordination of carboxyl groups on PAA with Fe3+ and the crystallization induced by Gdm+ with [Fe(CN)6]4- remarkably improve the thermoelectric performance, achieving a Seebeck coefficient (S) of 2.4 mV K-1 and ion conductivity (σ) of 1.4 S m-1 for the n-type TEC, and ‒2.8 mV K-1 and 1.9 S m-1 for the p-type TEC. A flexible wearable thermoelectric device is fabricated with a S of 82 mV K-1 and it maintains a stable output over one month. This research broadens the application scope of DESs in the thermoelectric field and offers promising strategies for long-lasting wearable energy solutions.

4.
iScience ; 27(10): 110885, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39319262

ABSTRACT

Uniformly distributed fluid shear stress can promote axonal growth, aiding in the efficient construction of functional neural interfaces. However, challenges remain in the construction of the micro-scale environment with a uniform fluidic stress distribution. In this study, we designed and fabricated a microfluidic chip with arched-section microfluidic channels (AMCs) to increase primary cortical neuron growth rate and terminal number by constructing a uniform-stress-distributed environment. Inspired by the three-dimensional (3D) microenvironment where cerebrospinal-fluid-contacting neurons are located, the surface curvature of the traditional rectangular-section microfluidic channel (RMC) was adjusted to construct structures with 3D curved surfaces. Compared with those on the RMC chips, the average growth rate of the axons on the AMC chips increased by 8.9% within 19 days, and the average number of terminals increased by 14.9%. This platform provides a structure that can effectively promote neuron growth and has potential in constructing more complex functional neural interfaces.

5.
Research (Wash D C) ; 7: 0414, 2024.
Article in English | MEDLINE | ID: mdl-39050820

ABSTRACT

Engineered microstructures that mimic in vivo tissues have demonstrated great potential for applications in regenerative medicine, drug screening, and cell behavior exploration. However, current methods for engineering microstructures that mimic the multi-extracellular matrix and multicellular features of natural tissues to realize tissue-mimicking microstructures in vitro remain insufficient. Here, we propose a versatile method for constructing tissue-mimicking heterogeneous microstructures by orderly integration of macroscopic hydrogel exchange, microscopic cell manipulation, and encapsulation modulation. First, various cell-laden hydrogel droplets are manipulated at the millimeter scale using electrowetting on dielectric to achieve efficient hydrogel exchange. Second, the cells are manipulated at the micrometer scale using dielectrophoresis to adjust their density and arrangement within the hydrogel droplets. Third, the photopolymerization of these hydrogel droplets is triggered in designated regions by dynamically modulating the shape and position of the excitation ultraviolet beam. Thus, heterogeneous microstructures with different extracellular matrix geometries and components were constructed, including specific cell densities and patterns. The resulting heterogeneous microstructure supported long-term culture of hepatocytes and fibroblasts with high cell viability (over 90%). Moreover, the density and distribution of the 2 cell types had significant effects on the cell proliferation and urea secretion. We propose that our method can lead to the construction of additional biomimetic heterogeneous microstructures with unprecedented potential for use in future tissue engineering applications.

6.
Cyborg Bionic Syst ; 5: 0095, 2024.
Article in English | MEDLINE | ID: mdl-38725973

ABSTRACT

Microfluidic chips offer high customizability and excellent biocompatibility, holding important promise for the precise control of biological growth at the microscale. However, the microfluidic chips employed in the studies of regulating cell growth are typically fabricated through 2D photolithography. This approach partially restricts the diversity of cell growth platform designs and manufacturing efficiency. This paper presents a method for designing and manufacturing neural cell culture microfluidic chips (NCMC) using two-photon polymerization (TPP), where the discrete and directional cell growth is optimized through studying the associated geometric parameters of on-chip microchannels. This study involves simulations and discussions regarding the effects of different hatching distances on the mold surface topography and printing time in the Describe print preview module, which determines the appropriate printing accuracy corresponding to the desired mold structure. With the assistance of the 3D maskless lithography system, micron-level rapid printing of target molds with different dimensions were achieved. For NCMC with different geometric parameters, COMSOL software was used to simulate the local flow velocity and shear stress characteristics within the microchannels. SH-SY5Y cells were selected for directional differentiation experiments on NCMC with different geometric parameters. The results demonstrate that the TPP-based manufacturing method efficiently constructs neural microfluidic chips with high precision, optimizing the discrete and directional cell growth. We anticipate that our method for designing and manufacturing NCMC will hold great promise in construction and application of microscale 3D drug models.

7.
Injury ; 55(7): 111593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762943

ABSTRACT

BACKGROUND: Surgical stabilization of rib fractures (SSRF) improves outcomes in chest wall trauma. Geriatric patients are particularly vulnerable to poor outcomes; yet, this population is often excluded from SSRF studies. Further delineating patient outcomes by age is necessary to optimize care for the aging trauma population. METHODS: A retrospective cohort study was conducted examining outcomes among patients aged 40+ for whom an SSRF consult was placed between 2017 and 2022 at a level 1 trauma center. Patients were categorized into geriatric (65+) and adult (40-64), as well as 80 years and older (80+) and 79 and younger (40-79). Patient outcomes were assessed comparing non-operative and operative management of chest wall trauma. Propensity matched analysis was performed to evaluate mortality differences between adult and geriatric patients who did and did not undergo SSRF. RESULTS: A total of 543 patients had an SSRF consult. Of these, 227 were 65+, and 73 were 80+. A total of 129 patients underwent SSRF (24 %). The percentage of patients undergoing SSRF did not vary between 40 and 64 and 65+ (23.7 % and 23.6 %, respectively, p = 0.97) or 40-79 and 80+ (24.0 vs 21.9, p = 0.69). Patients undergoing SSRF had higher chest injury burden and were more likely to require mechanical ventilation and ICU level care on admission. Overall, in-hospital mortality rate was 4.6 %. Among patients who underwent SSRF, mortality rate did not significantly differ between 65+ and 40-64 (7.8% vs 2.7 %, p = 0.18) or 80+ and 40-79 (6.3% vs 4.6 %, p = 0.77). This remained true in propensity matched analysis. CONCLUSION: Geriatric and octogenarian patients with rib fractures underwent SSRF at similar rates and achieved equivalent outcomes to their younger counterparts. SSRF did not differentially affect mortality outcomes based on age group in propensity matched analysis. SSRF is safe for geriatric patients including octogenarians.


Subject(s)
Propensity Score , Rib Fractures , Trauma Centers , Humans , Rib Fractures/surgery , Rib Fractures/mortality , Female , Male , Retrospective Studies , Aged , Aged, 80 and over , Middle Aged , Treatment Outcome , Adult , Age Factors , Hospital Mortality , Fracture Fixation, Internal/methods , Thoracic Injuries/surgery , Thoracic Injuries/mortality
8.
Proc Natl Acad Sci U S A ; 121(17): e2318853121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630722

ABSTRACT

Recently, there has been a notable surge in interest regarding reclaiming valuable chemicals from waste plastics. However, the energy-intensive conventional thermal catalysis does not align with the concept of sustainable development. Herein, we report a sustainable electrocatalytic approach allowing the selective synthesis of glycolic acid (GA) from waste polyethylene terephthalate (PET) over a Pd67Ag33 alloy catalyst under ambient conditions. Notably, Pd67Ag33 delivers a high mass activity of 9.7 A mgPd-1 for ethylene glycol oxidation reaction (EGOR) and GA Faradaic efficiency of 92.7 %, representing the most active catalyst for selective GA synthesis. In situ experiments and computational simulations uncover that ligand effect induced by Ag incorporation enhances the GA selectivity by facilitating carbonyl intermediates desorption, while the lattice mismatch-triggered tensile strain optimizes the adsorption of *OH species to boost reaction kinetics. This work unveils the synergistic of strain and ligand effect in alloy catalyst and provides guidance for the design of future catalysts for PET upcycling. We further investigate the versatility of Pd67Ag33 catalyst on CO2 reduction reaction (CO2RR) and assemble EGOR//CO2RR integrated electrolyzer, presenting a pioneering demonstration for reforming waste carbon resource (i.e., PET and CO2) into high-value chemicals.

9.
Int J Biol Macromol ; 267(Pt 1): 131291, 2024 May.
Article in English | MEDLINE | ID: mdl-38583839

ABSTRACT

Bacterial cellulose (BC) hydrogels are promising medical biomaterials that have been widely used for tissue repair, wound healing and cartilage engineering. However, the high water content of BC hydrogels increases the difficulty of storage and transportation. Moreover, they will lose their original hydrogel structure after dehydration, which severely limits their practical applications. Introducing the bio-based polyelectrolytes is expected to solve this problem. Here, we modified BC and combined it with quaternized chitosan (QCS) via a chemical reaction to obtain a dehydrated dialdehyde bacterial cellulose/quaternized chitosan (DBC/QCS) hydrogel with repeated swelling behavior and good antibacterial properties. The hydrogel can recover the initial state on the macro scale with a swelling ratio over 1000 % and possesses excellent antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with a killing rate of 80.8 % and 81.3 %, respectively. In addition, the hydrogel has excellent biocompatibility, which is conducive to the stretching of L929 cells. After 14 d of in vivo wound modeling in rats, it was found that the hydrogel loaded with pirfenidone (PFD) could promote collagen deposition and accelerate wound healing with scar prevention. This rehydratable hydrogel can be stored and transported under dry conditions, which is promising for practical applications.


Subject(s)
Anti-Bacterial Agents , Cellulose , Escherichia coli , Hydrogels , Staphylococcus aureus , Wound Healing , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Staphylococcus aureus/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Escherichia coli/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Mice , Cell Line , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
Cyborg Bionic Syst ; 6: 0077, 2024.
Article in English | MEDLINE | ID: mdl-38435709

ABSTRACT

Flexible miniature robots are expected to enter difficult-to-reach areas in vivo to carry out targeted operations, attracting widespread attention. However, it is challenging for the existing soft miniature robots to substantially alter their stable shape once the structure is designed. This limitation leads to a fixed motion mode, which subsequently restricts their operating environment. In this study, we designed a biocompatible flexible miniature robot with a variable stable form that is capable of adapting to complex terrain environments through multiple movement modes. Inspired by the reversible stretching reaction of alginate saline gel stimulated by changes in environmental ion concentration, we manufactured a morphologically changeable super-soft hydrogel miniature robot body. According to the stretch and contraction shapes of the flexible hydrogel miniature robot, we designed magnetic fields for swing and rolling motion modes to realize multi-shape movement. The experimental results demonstrate that the deflection angle of the designed flexible miniature robot is reversible and can reach a maximum of 180°. The flexible miniature robot can complete forward swinging in the bar stretch state and tumbling motion in the spherical state. We anticipate that flexible hydrogel miniature robots with multiple morphologies and multimodal motion have great potential for biomedical applications in complex, unstructured, and enclosed living environments.

11.
Chempluschem ; 89(6): e202400139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470161

ABSTRACT

Constructing heterojunction photocatalysts are widely applied to boost the photocatalytic activity of materials. Here, a novel covalent organic framework (COF) material with heptazine units was developed and hybridized with TiO2 nano particles (NPs) to fabricate the Heptazine-COF@TiO2 photocatalysts for acetaminophen (AAP) photodegradation. The successfully assembled heptazine unit endows the Heptazine-COF with outstanding semiconductor property (optical bandgap is 2.53 eV). The synthesized Heptazine-COF@TiO2 hybrids is proved to have the heterojunction structure with high visible light activity and fast charge-carrier mobility, and exhibits better performance in photodegradation of AAP under visible light. The excellent photodegradation efficiency (rate constant: 0.758 min-1) and high reusability (rate constant: 0.452 min-1 in the 6th cycles) of the optimized sample outperform the traditional inorganic photocatalysts and other heterojunction photocatalysts. In addition, these photocatalysts present universal degradation activity for other dyes and antibiotics.

12.
Int J Biol Macromol ; 266(Pt 2): 130752, 2024 May.
Article in English | MEDLINE | ID: mdl-38467229

ABSTRACT

Fluorescent probes offer rapid and efficient detection of metal ions. However, their properties, including high biotoxicity and low detection limits, often limit their utility in biological systems. In this study, we used a microfluidic approach to fabricate photocrosslinked gelatin microspheres with a micropore, providing a straightforward method for loading fluorescent probes into these microspheres based on the adsorption effect and hydrogen bonding interaction. The gelatin microsphere loaded probes, GelMA/TPA-DAP and GelMA/TPA-ISO-HNO were designed and obtained. The results show that these probes exhibit obviously low biotoxicity compared to the original molecular probes TPA-DAP and TPA-ISO-HNO. Simultaneously, it is found that GelMA/TPA-DAP and GelMA/TPA-ISO-HNO have better detection sensitivity, the detection limits are 35.4 nM for Cu2+, 16.5 nM for Co2+ and 20.5 nM for Ni2+ for GelMA/TPA-DAP probe. Compared to the original TPA-DAP they are improved by 37.2 %, 26.3 % and 22.6 % respectively. The corresponding coordination constants were 10.8 × 105, 4.11×105 and 6.04×105, which is larger than homologous TPA-DAP. Similar results were also verified in the GelMA/TPA-ISO-HNO probe. The mechanism was investigated in detail by theoretical simulations and advanced spectral analysis. The density functional theory (DFT) simulations show that the probes are anchored inside the microspheres and the molecular structure is modified due to the hydrogen bonding interaction between the microsphere and the molecular probe, which makes GelMA/TPA-DAP exhibit stronger coordination capacity with metal ions than homologous TPA-DAP. In addition, the adsorption effect also provided some synergistic enhancement contribution. Meanwhile, cellular experiments have also shown that the composite microspheres can improve the biocompatibility of the probe and will provide a wider range of applications towards bioassay. This simple and effective method will provide a convenient way to improve the performance of fluorescent probes and their biological applications.


Subject(s)
Fluorescent Dyes , Gelatin , Hydrogen Bonding , Microspheres , Gelatin/chemistry , Fluorescent Dyes/chemistry , Animals
13.
Adv Mater ; 36(24): e2401505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38437452

ABSTRACT

Lithium-rich manganese-based layered oxides (LRMOs) are promisingly used in high-energy lithium metal pouch cells due to high specific capacity/working voltage. However, the interfacial stability of LRMOs remains challenging. To address this question, a novel armor-like cathode electrolyte interphase (CEI) model is proposed for stabilizing LRMO cathode at 4.9 V by exploring partially fluorinated electrolyte formulation. The fluoroethylene carbonate (FEC) and tris (trimethylsilyl) borate (TMSB) in formulated electrolyte largely contribute to the formation of 4.9 V armor-like CEI with LiBxOy and LixPOyFz outer layer and LiF- and Li3PO4-rich inner part. Such CEI effectively inhibits lattice oxygen loss and facilitates the Li+ migration smoothly for guaranteeing LRMO cathode to deliver superior cycling and rate performance. As expected, Li||LRMO batteries with such electrolyte achieve capacity retention of 85.7% with high average Coulomb efficiency (CE) of 99.64% after 300 cycles at 4.8 V/0.5 C, and even obtain capacity retention of 87.4% after 100 cycles at higher cut-off voltage of 4.9 V. Meanwhile, the 9 Ah-class Li||LRMO pouch cells with formulated electrolyte show over thirty-eight stable cycling life with high energy density of 576 Wh kg-1 at 4.8 V.

14.
Small ; 20(30): e2311498, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38377274

ABSTRACT

Fiber crossbars, an emerging electronic device, have become the most promising basic unit for advanced smart textiles. The demand for highly sensitive fiber crossbar sensors (FCSs) in wearable electronics is increased. However, the unique structure of FCSs presents challenges in replicating existing sensitivity enhancement strategies. Aiming at the sensitivity of fiber crossbar sensors, a second-order synergistic strategy is proposed that combines air capacitance and equipotential bodies, resulting in a remarkable sensitivity enhancement of over 20 times for FCSs. This strategy offers a promising avenue for the design and fabrication of FCSs that do not depend on intricate microstructures. Furthermore, the integrative structure of core-sheath fibers ensures a robust interface, leading to a low hysteresis of only 2.33% and exceptional stability. The outstanding capacitive response performance of FCSs allows them to effectively capture weak signals such as pulses and sounds. This capability opens up possibilities for the application of FCSs in personalized health management, as demonstrated by wireless monitoring systems based on pulse signals.

15.
Small ; 20(28): e2311731, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38321844

ABSTRACT

Wilderness adventure favored by many enthusiasts often endanger lives due to lacking freshwater or drinking contaminated water. Therefore, compared to the inefficient methods of filtration, steaming, and direct solar heating, it is of great meaningfulness to develop a solar-driven water purification device with efficiency, lightweight, portability, and multi-water-quality purification by taking full advantage of solar-driven interfacial evaporation. Here, a tent-inspired portable solar-driven water purification device consisting of Janus-structured bacterial cellulose aerogel (JBCA) solar evaporator and tent-type condensation recovery device is reported. For the JBCA solar evaporator, it is prepared from biomass bacterial cellulose (BC) as raw material and hydroxylated carbon nanotubes (HCNT) as photothermal material, and the Janus property is achieved by the assistance of hydrophobic and hydrophilic chemical cross-linking. It exhibits lightweight, unibody, high photothermal conversion, efficient evaporation, and multi-water-quality purification capability for representative seawater, urine, and bacterial river water. For the tent-type condensation recovery device, it is based on the prototype of tent and uses flexible ultra-transparent polyvinyl chloride (PVC) film as raw material. Thanks to the rational prototype and material selection, it displays outstanding portability and lightweight through the folding/unfolding method. Therefore, the designed tent-inspired portable solar-driven water purification device demonstrates great potential application in wilderness exploration.

16.
Nano Lett ; 24(7): 2218-2225, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38277614

ABSTRACT

Significant untapped energy exists within low-grade heat sources and salinity gradients. Traditional nanofluidic membranes exhibit inherent limitations, including low ion selectivity, high internal resistance, reliance on nonrenewable resources, and instability in aqueous solutions, invariably constraining their practical application. Here, an innovative composite membrane-based nanofluidic system is reported, involving the strategy of integrating tailor-modified bacterial nanofibers with boron nitride nanosheets, enabling high surface charge densities while maintaining a delicate balance between ion selectivity and permeability, ultimately facilitating effective thermo-osmotic energy harvesting. The device exhibits an impressive output power density of 10 W m-2 with artificial seawater and river water at a 50 K temperature gradient. Furthermore, it demonstrates robust power density stability under prolonged exposure to salinity gradients or even at elevated temperatures. This work opens new avenues for the development of nanofluidic systems utilizing composite materials and presents promising solutions for low-grade heat recovery and osmotic energy harvesting.

17.
Haematologica ; 109(4): 1206-1219, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37767568

ABSTRACT

Multiple myeloma (MM) remains incurable due to drug resistance. Ribosomal protein S3 (RPS3) has been identified as a non-Rel subunit of NF-κB. However, the detailed biological roles of RPS3 remain unclear. Here, we report for the first time that RPS3 is necessary for MM survival and drug resistance. RPS3 was highly expressed in MM, and knockout of RPS3 in MM inhibited cell growth and induced cell apoptosis both in vitro and in vivo. Overexpression of RPS3 mediated the proteasome inhibitor resistance of MM and shortened the survival of MM tumor-bearing animals. Moreover, our present study found an interaction between RPS3 and the thyroid hormone receptor interactor 13 (TRIP13), an oncogene related to MM tumorigenesis and drug resistance. We demonstrated that the phosphorylation of RPS3 was mediated by TRIP13 via PKCδ, which played an important role in activating the canonical NF-κB signaling and inducing cell survival and drug resistance in MM. Notably, the inhibition of NF-κB signaling by the small-molecule inhibitor targeting TRIP13, DCZ0415, was capable of triggering synergistic cytotoxicity when combined with bortezomib in drug-resistant MM. This study identifies RPS3 as a novel biomarker and therapeutic target in MM.


Subject(s)
Multiple Myeloma , NF-kappa B , Animals , NF-kappa B/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Ribosomal Proteins/genetics , Bortezomib/pharmacology , Bortezomib/therapeutic use , Drug Resistance , Cell Line, Tumor
18.
Angew Chem Int Ed Engl ; 63(7): e202315608, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38083796

ABSTRACT

The development of high-energy-density Li||LiCoO2 batteries is severely limited by the instability of cathode electrolyte interphase (CEI) at high voltage and high temperature. Here we propose a mechanically and thermally stable CEI by electrolyte designing for achieving the exceptional performance of Li||LiCoO2 batteries at 4.6 V and 70 °C. 2,4,6-tris(3,4,5-trifluorophenyl)boroxin (TTFPB) as the additive could preferentially enter into the first shell structure of PF6 - solvation and be decomposed on LiCoO2 surface at low oxidation potential to generate a LiBx Oy -rich/LiF-rich CEI. The LiBx Oy surface layer effectively maintained the integrity of CEI and provided excellent mechanical and thermal stability while abundant LiF in CEI further improved the thermal stability and homogeneity of CEI. Such CEI drastically alleviated the crack and regeneration of CEI and irreversible phase transformation of the cathode. As expected, the Li||LiCoO2 batteries with the tailored CEI achieved 91.9 % and 74.0 % capacity retention after 200 and 150 cycles at 4.6 and 4.7 V, respectively. Moreover, such batteries also delivered an unprecedented high-temperature performance with 73.6 % capacity retention after 100 cycles at 70 °C and 4.6 V.

19.
Small ; 20(12): e2307259, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948421

ABSTRACT

As one of the important directions of solar energy utilization, the construction of composite photothermal phase change materials (PCM) with reasonable network support and low leakage in the simple method is important to solve the transient availability of solar energy and achieve long-lasting energy output. Here, a multifunctional silylated bacterial cellulose (BC)/hydroxylated carbon nanotube (HCNT)/polyethylene glycol (PEG) (SBTP) photothermal film-based PCM with cross-linked network structure is prepared by simple one-step synthesis. The formation of the cross-linked network structure achieves the enhancement of BC support network, prominent dispersion of HCNT and the direct introduction and perfect interlocking of PEG. Therefore, the optimal SBTP film exhibits high thermal enthalpy of 145.1 J g-1, enthalpy efficiency of over 94%, robust shape stability and low leakage of <1.2%. It also displays high photothermal conversion of over 80 °C, photothermal storage of 394 s g-1 and excellent stability. Thus, it can demonstrate a maximum output voltage of 423 mV and high power density of 30.26 W m-2 under three solar irradiations when applied in the solar-thermal-electric energy conversion field. Meanwhile, it also can apply in the thermal management of solar cell and light-emitting diode (LED) chip, and convert the waste heat into electricity, demonstrating multi-scene application capability.

20.
ACS Nano ; 18(1): 600-611, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38126347

ABSTRACT

The rapid development of artificial intelligent wearable devices has led to an increasing need for seamless information exchange between humans, machines, and virtual spaces, often relying on touch sensors as the primary interaction medium. Additionally, the demand for underwater detection technologies is on the rise owing to the prevalent wet and submerged environment. Here, a fiber-based capacitive sensor with superior stretchability and hydrophobicity is proposed, designed to cater to noncontact and underwater applications. The sensor is constructed using bacterial cellulose (BC)@BC/carbon nanotubes (CNTs) (BBT) helical fiber as the matrix and methyltrimethoxysilane (MTMS) as the hydrophobic modified agent, forming a hydrophobic silylated BC@BC/CNT (SBBT) helical fiber by the chemical vapor deposition (CVD) technique. These fibers exhibit an impressive contact angle of 132.8°. The SBBT helicalfiber-based capacitive sensor presents capabilities for both noncontact and underwater sensing, which exhibits a significant capacitance change of -0.27 (at a distance of 0.5 cm). We have achieved interactive control between real space and virtual space through intelligent data analysis technology with minimal interference from the presence of water. This work has laid a solid foundation of noncontact sensing with attributes such as degradability, stretchability, and hydrophobicity. Moreover, it offers promising solutions for barrier-free communication in virtual reality (VR) and underwater applications, providing avenues for smart human-machine interfaces for submerged use.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Humans , Nanotubes, Carbon/chemistry , Cellulose , Touch
SELECTION OF CITATIONS
SEARCH DETAIL