Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999933

ABSTRACT

Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth.


Subject(s)
Larix , Plant Leaves , Plant Proteins , Proteome , Proteomics , Larix/metabolism , Larix/growth & development , Plant Leaves/metabolism , Plant Leaves/growth & development , Acetylation , Proteome/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proteomics/methods , Gene Expression Regulation, Plant , Lysine/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713211

ABSTRACT

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Subject(s)
Chitinases , Gene Silencing , Laccase , Chitinases/genetics , Chitinases/metabolism , Chitinases/biosynthesis , Laccase/genetics , Laccase/metabolism , Laccase/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Agaricales/genetics , Agaricales/enzymology , Fermentation , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mycelium/genetics , Mycelium/growth & development , Mycelium/enzymology , Cell Wall/metabolism , Cell Wall/genetics
3.
J Clin Gastroenterol ; 58(1): 31-38, 2024 01 01.
Article in English | MEDLINE | ID: mdl-36730560

ABSTRACT

GOALS: A combination of multiple tests was introduced to noninvasively investigate the differences in pathophysiologies among functional dyspepsia (FD) subgroups, including postprandial distress syndrome (PDS), epigastric pain syndrome (EPS), and overlap. BACKGROUND: It has not been extensively evaluated whether different pathophysiologies are involved in FD subgroups. STUDY: This multicenter study included 364 FD patients fulfilling Rome IV criteria and 47 healthy controls. A combined noninvasive gastric and autonomic function test was performed: The electrogastrogram and electrocardiogram were recorded simultaneously in the fasting state and after a drink test. Symptoms after drinking were recorded using visual analog scale. RESULTS: (1) Compared with HC, FD patients showed a decreased maximum tolerable volume (MTV) ( P <0.01) and percentage of normal gastric slow waves [normal gastric slow waves (%NSW)] ( P <0.01), and increased postdrinking symptoms, anxiety ( P <0.01), and depression ( P <0.01). The drink reduced %NSW in both FD patients and HC; however, the effect was more potent in patients. (2) The PDS and overlap groups displayed a reduced MTV ( P <0.05). The overlap group exhibited a higher symptom score at 30 minutes after drinking, and higher anxiety and depression scores, and a higher sympathovagal ratio than the EPS ( P <0.05 for all) and PDS ( P <0.01 for all). (3) In the PDS subgroup, the MTV, postprandial sympathovagal ratio, and depression were associated with the overall dyspepsia symptom scale (DSS, P =0.034, 0.021, 0.043, respectively). No significant associations were found in the other 2 subgroups. CONCLUSIONS: The combination of multiple tests can detect pathophysiological abnormities in FD patients. Overall, patients with overlap symptoms display more severe pathophysiologies.


Subject(s)
Dyspepsia , Gastritis , Humans , Abdominal Pain/etiology , Abdominal Pain/diagnosis , Gastritis/complications , Postprandial Period/physiology
SELECTION OF CITATIONS
SEARCH DETAIL