Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.749
1.
Neural Regen Res ; 20(1): 67-81, 2025 Jan 01.
Article En | MEDLINE | ID: mdl-38767477

Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.

2.
Front Microbiol ; 15: 1374618, 2024.
Article En | MEDLINE | ID: mdl-38774509

Ammonia oxidation is the rate-limiting step in nitrification and the key step in the nitrogen (N) cycle. Most soil nutrients and biological indicators are extremely sensitive to irrigation systems, from the perspective of improving soil fertility and soil ecological environment, the evaluation of different irrigation systems and suitability of selection, promote crop production and soil quality, study the influence of the soil microenvironment contribute to accurate evaluation of irrigation farmland soil health. Based on the amoA gene, the abundance and community diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and their responses to soil physicochemical factors and enzyme activities were studied in semi-arid areas of Northeast China. The study consisted of three irrigation systems: flood irrigation (FP), shallow buried drip irrigation (DI), and mulched drip irrigation (MF). The results showed that DI and MF significantly increased the contents of alkaline hydrolyzed nitrogen (AN), nitrate nitrogen (NO3--N), soil moisture, and the activities of ammonia monooxygenase (AMO) and hydroxylamine oxidase (HAO). Compared with FP, DI significantly increased the abundance of soil AOA and AOB, while MF significantly increased the abundance of soil AOB. Irrigation systems significantly affected the community composition of ammonia-oxidizing microorganisms (AOM). Also, AN and soil moisture had the greatest influence on the community composition of AOA and AOB, respectively. The AOB community had better stability and stress resistance. Moreover, the symbiotic network of AOB in the three irrigation systems was more complex than that of AOA. Compared with FP, the AOA community under treatment DI had higher complexity and stability, maintaining the versatility and sustainability of the ecosystem, while the AOB community under treatment MF had higher transfer efficiency in terms of matter and energy. In conclusion, DI and MF were more conducive to the propagation of soil AOM in the semi-arid area of Northeast China, which can provide a scientific basis for rational irrigation and N regulation from the perspective of microbiology.

3.
Angiology ; : 33197241253313, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775330

The present study aimed to develop a model to predict functional disability at 3 months in patients with acute ischemic stroke (AIS) (n = 5,406). The primary outcome was functional disability (modified Rankin Scale [mRS] >2) at 3 months. A prediction model including blood biomarkers was developed based on a multivariable logistic regression model, which was internally validated by the 100-time bootstrap method. A nomogram and a web-based calculator were developed for usage in clinical practice. At 3 months, 11% (638/5,406) of the patients had functional disability. Seven independent predictors of functional disability at 3 months were incorporated into the FAITHS2 model (fasting plasma glucose, age, interleukin-6, stroke history, National Institute of Health Stroke Scale [NIHSS] at admission, sex, and systolic blood pressure). The Area Under Curves (AUCs) were 0.814 (95% confidence interval [CI] 0.796-0.832) and 0.808 (95% CI 0.806-0.810), and the Brier scores were 0.088 ± 0.214 and 0.089 ± 0.003 for the derivation cohort and internal validation, respectively, showing optimal performance of the model. The FAITHS2 model has excellent potential to be a dependable application for individualized clinical decision making.

4.
Bioinformatics ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38775410

MOTIVATION: Motivation: Accurate segmentation and recognition of Caenorhabditis elegans cells are critical for various biological studies, including gene expression, cell lineages and cell fates analysis at single-cell level. However, the highly dense distribution, similar shapes, and inhomogeneous intensity profiles of whole-body cells in 3D fluorescence microscopy images make automatic cell segmentation and recognition a challenging task. Existing methods either rely on additional fiducial markers or only handle a subset of cells. Given the difficulty or expense associated with generating fiducial features in many experimental settings, a marker-free approach capable of reliably segmenting and recognizing C. elegans whole-body cells is highly desirable. RESULTS: We report a new pipeline, called Automated Segmentation and Recognition (ASR) of cells, and applied it to 3D fluorescent microscopy images of L1-stage C. elegans with 558 whole-body cells. A novel displacement vector field based deep learning model is proposed to address the problem of reliable segmentation of highly crowded cells with blurred boundary. We then realize the cell recognition by encoding and exploiting statistical priors on cell positions and structural similarities of neighboring cells. To the best of our knowledge, this is the first method successfully applied to the segmentation and recognition of C. elegans whole-body cells. The ASR segmentation module achieves an F1-score of 0.8956 on a dataset of 116 C. elegans image stacks with 64728 cells (Accuracy 0.9880, AJI 0.7813). Based on the segmentation results, the ASR recognition module achieved an average accuracy of 0.8879. We also show ASR's applicability to other cell types, e.g. platynereis and rat kidney cells. AVAILABILITY: The code is available at https://github.com/reaneyli/ASR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
J Gastrointest Oncol ; 15(2): 730-746, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38756638

Background: Solute carrier family 16 member 1 (SLC16A1) serves as a biomarker in numerous types of cancer. Tumor immune infiltration has drawn increasing attention in cancer progression and treatment. The objective of our study was to explore the association between SLC16A1 and the tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC). Methods: Data were obtained from The Cancer Genome Atlas. The xCell web tool was used to calculate the proportion of immune cells according to SLC16A1 expression. To further explore the mechanism of SLC16A1, immunity-related genes were screened from differentially expressed genes through weighted gene coexpression network analysis, examined via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and filtrated using univariate Cox regression and least absolute shrinkage and selection operator regression model combined correlation analysis (P<0.05). Next, CIBERSORT was used to analyze the correlation between immune cells and five important genes. SLC16A1 expression and its clinical role in pancreatic cancer was clarified via immunohistochemical staining experiments. Finally, the effects of SLC16A1 on the results of cancer immunity were evaluated by in vitro experiments. Results: SLC16A1 was overexpressed in PDAC tissues and could be an independent prognostic factor. SLC16A1 was significantly negatively correlated with overall survival and suppressed the tumor immunity of PDAC. In clinic, SLC16A1 expression was significantly positively correlated with tumor progression and poor prognosis. We also found that SLC16A1 could suppress the antitumor ability of CD8+ T cells. Conclusions: SLC16A1 is a biomarker for the prognosis of PDAC and can influence the immune environment of PDAC. These findings provide new insights into the treatment of PDAC.

6.
Chemphyschem ; : e202400143, 2024 May 10.
Article En | MEDLINE | ID: mdl-38726743

Electrocatalytic nitrogen reduction reaction (NRR) is a green and highly efficient way to replace the industrial Haber-Bosch process. Herein, clusters consisting of three transition metal atoms loaded on C2N as NRR electrocatalysts are investigated using density functional theory (DFT). Meanwhile, Ca was introduced as a promoter and the role of Ca in NRR was investigated. It was found that Ca anchored to the catalyst can act as an electron donor and effectively promote the activation of N2 on M3. In both M3@C2N and M3Ca@C2N (M = Fe, Co, Ni), the limiting potential (UL) is less negative than that of the Ru(0001) surface and has the ability to suppress the competitive hydrogen evolution reaction (HER). Among them, Fe3@C2N is suggested to be the most promising candidate for NRR with high thermal stability, strong N2 adsorption ability, low limiting potential, and good NRR selectivity. The concepts of trimetallic sites and alkaline earth metal promoters in this work provide theoretical guidance for the rational design of atomically active sites in electrocatalytic NRR.

7.
iScience ; 27(5): 109732, 2024 May 17.
Article En | MEDLINE | ID: mdl-38706862

In Drosophila, long noncoding RNA Hsrω rapidly assembles membraneless organelle omega speckles under heat shock with unknown biological function. Here, we identified the distribution of omega speckles in multiple tissues of adult Drosophila melanogaster and found that they were selectively distributed in differentiated enterocytes but not in the intestinal stem cells of the midgut. We mimicked the high expression level of Hsrω via overexpression or intense heat shock and demonstrated that the assembly of omega speckles nucleates TBPH for the induction of ISC differentiation. Additionally, we found that heat shock stress promoted cell differentiation, which is conserved in mammalian cells through paraspeckles, resulting in large puncta of TDP-43 (a homolog of TBPH) with less mobility and the differentiation of human induced pluripotent stem cells. Overall, our findings confirm the role of Hsrω and omega speckles in the development of intestinal cells and provide new prospects for the establishment of stem cell differentiation strategies.

8.
J Ophthalmol ; 2024: 9911979, 2024.
Article En | MEDLINE | ID: mdl-38716089

Purpose: To determine the advantages of next-generation metagenomic sequencing (mNGS) technology in the diagnosis and treatment of infectious keratitis (IK). Methods: A total of 287 patients with IK admitted to the Department of Ophthalmology of Nanjing First Hospital between August 2018 and December 2022 were analyzed retrospectively, and the pathogenic causes, etiological characteristics, detection, treatment methods, and efficacy were summarized. Results: Trauma and foreign matter were the most common causes of IK (144 patients, 50.2%). Of the 287 patients, 228 (79.4%) were diagnosed with a specific etiology, including 110 (48.2%) fungal infections, 44 (19.3%) viral infections, 42 (18.4%) mixed infections, and 30 (13.2%) bacterial infections. Filamentous fungi represented by Fusarium and Aspergillus were the most common, followed by bacteria such as Pseudomonas aeruginosa, Streptococcus pneumoniae, viruses (Herpes Simplex Virus/Varicella-Zoster Virus), and parasites. The positivity rates of secretion culture, corneal laser confocal microscopy (CM), mNGS, and pathological sections were 47.3% (133/281), 45.3% (111/245), 83.9% (104/124), and 19.3% (40/207), respectively. The positivity rate of mNGS for bacteria and viruses was higher than that of the other methods, and the positivity rate for fungi was the same as that for CM. As a result, 214 cases (74.6%) were cured, 51 cases (17.8%) improved, 8 cases (2.8%) did not heal, ocular content enucleation was performed in 14 cases (4.9%), and the overall efficacy rate was 92.3%. Conclusion: Trauma and foreign matter are the main causes of IK. The mNGS technology is an efficient and comprehensive detection method for viruses and bacteria, especially for mixed infections.

9.
PLoS Comput Biol ; 20(5): e1012113, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728362

The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.

10.
Food Res Int ; 186: 114305, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729687

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Equidae , Fermentation , Goats , Kefir , Milk , Animals , Kefir/microbiology , Cattle , Milk/microbiology , Milk/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Camelus , Food Microbiology , Lactobacillus/metabolism , Microbiota , Acetobacter/metabolism , Amino Acids/metabolism , Amino Acids/analysis
11.
Environ Res ; 252(Pt 4): 119094, 2024 May 07.
Article En | MEDLINE | ID: mdl-38723988

BACKGROUND: Climate change continues to increase the frequency, intensity, and duration of heat events and wildfires, both of which are associated with adverse pregnancy outcomes. Few studies simultaneously evaluated exposures to these increasingly common exposures. OBJECTIVES: We investigated the relationship between exposure to heat and wildfire smoke and preterm birth (PTB). METHODS: In this time-stratified case-crossover study, participants consisted of 85,806 California singleton PTBs (20-36 gestational weeks) from May through October of 2015-2019. Birthing parent ZIP codes were linked to high-resolution daily weather, PM2.5 from wildfire smoke, and ambient air pollution data. Heat day was defined as a day with apparent temperature >98th percentile within each ZIP code and heat wave was defined as ≥2 consecutive heat days. Wildfire-smoke day was defined as a day with any exposure to wildfire-smoke PM2.5. Conditional logistic regression was used to calculate the odds ratio (OR) and 95% confidence intervals (CI) comparing exposures during a hazard period (lags 0-6) compared to control periods. Analyses were adjusted for relative humidity, fine particles, and ozone. RESULTS: Wildfire-smoke days were associated with 3.0% increased odds of PTB (ORlag0: 1.03, CI: 1.00-1.05). Compared with white participants, associations appeared stronger among Black, Hispanic, Asian, and American Indians/Alaskan Native participants. Heatwave days (ORlag2: 1.07, CI: 1.02-1.13) were positively associated with PTB, with stronger associations among those simultaneously exposed to wildfire smoke days (ORlag2: 1.19, CI: 1.11-1.27). Similar findings were observed for heat days and when other temperature metrics (e.g., maximum, minimum) were used. DISCUSSION: Heat and wildfire increased PTB risk with evidence of synergism. As the occurrence and co-occurrence of these events increase, exposure reduction among pregnant people is critical, especially among racial/ethnic minorities.

12.
Animals (Basel) ; 14(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731317

In this study, we investigated the effects of lentinan (LNT) on hematological parameters, immune indices, and metabolite levels in dairy cows. We randomly assigned forty Holstein cows to four treatment groups. The treatments consisted of 0, 5, 10, and 15 g/d of LNT. Compared with the control group, the addition of 10 g/d of LNT decreased the content of ALT and IL-8 but simultaneously increased the content of IL-4 in the cows' serum. Supplementation with 10 g/d of LNT decreased the levels of lymphocyte, RDW, ALT, AST, TC, IL-2, and IL-8, but, concurrently, in-creased the levels of granulocytes and IL-4 in their serum. In addition, supplementation with 15 g/d of LNT decreased the levels of RDW, TC, IL-2, and IL-8, but, at the same time, increased the levels of IL-4 and IgM in their serum. For the metabolomic analysis, cows fed with 0 and 10 g/d of LNT were selected. The results showed that 10 metabolites, including reduced nicotinamide riboside and trehalose, were upregulated in the 10 g/d group. These differential metabolites were enriched in tyrosine metabolism and trehalose degradation and altered two metabolic pathways of ubiquinone and other terpene quinone biosynthesis, as well as starch and sucrose metabolism. These findings provide evidence that LNT could be used to reduce the risk of inflammation in dairy cows.

13.
Theriogenology ; 223: 74-88, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38692037

Mammalian embryos produced in vitro have poor embryo quality and low developmental ability compared with in vivo embryos. The main manifestations are the low number of blastocysts, the low ratio of the number of inner cell mass cells to the number of trophoblastic cells, and the high apoptosis rate of blastocysts, resulting in low embryo implantation rate. Therefore, optimizing in vitro culture conditions has become a key technology to im-prove the quality of preimplantation embryos. Oviduct Epithelial cells exosomes (OEVs) can be absorbed and internalized by embryos to improve the blastocyst rate and blastocyst quality of embryos in vitro. As a special nuclear structure, Paraspeckles are involved in the fate determination of mammalian early embryonic mammalian cells. However, the regulation of embryonic cell differentiation by OEVs remains unknown. We aimed to investigate the effects of OEVs on paraspeckle formation and cell fate determination in yak in vitro fertilization (IVF) of em-bryos. To simulate the in vivo oviduct environment after ovulation, we used follicular fluid exosomes (FEVs) to stimulate yak oviduct epithelial cells and collect OEVs. OEVs were added to the yak IVF embryo culture system. Paraspeckle formation, cell differentiation, and blastocyst quality in yak embryos were determined. Our results show that, development of yak embryos is unique compared to other bovine species, and OEVs can be used as a supplement to the in vitro culture system of yak embryos to improve embryonic development and blas-tocyst quality. And also Paraspeckles/CARM1 mediated the regulation of OEVs on cell differentiation during in vitro yak embryo production. These results provide new insights into the study of yak embryonic development and the role of OEVs in embryonic development.


Cell Differentiation , Embryo Culture Techniques , Embryonic Development , Epithelial Cells , Exosomes , Animals , Female , Embryonic Development/physiology , Cattle/embryology , Epithelial Cells/physiology , Epithelial Cells/metabolism , Embryo Culture Techniques/veterinary , Exosomes/metabolism , Fertilization in Vitro/veterinary , Fallopian Tubes/cytology , Blastocyst/physiology , Oviducts
14.
Langenbecks Arch Surg ; 409(1): 148, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695994

In the past 40 years, the incidence of esophagogastric junction cancer has been gradually increasing worldwide. Currently, surgical resection remains the main radical treatment for early gastric cancer. Due to the rise of functional preservation surgery, proximal gastrectomy has become an alternative to total gastrectomy for surgeons in Japan and South Korea. However, the methods of digestive tract reconstruction after proximal gastrectomy have not been fully unified. At present, the principal methods include esophagogastrostomy, double flap technique, jejunal interposition, and double tract reconstruction. Related studies have shown that double tract reconstruction has a good anti-reflux effect and improves postoperative nutritional prognosis, and it is expected to become a standard digestive tract reconstruction method after proximal gastrectomy. However, the optimal anastomoses mode in current double tract reconstruction is still controversial. This article aims to review the current status of double tract reconstruction and address the aforementioned issues.


Anastomosis, Surgical , Gastrectomy , Plastic Surgery Procedures , Stomach Neoplasms , Humans , Gastrectomy/methods , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Anastomosis, Surgical/methods , Plastic Surgery Procedures/methods , Esophagogastric Junction/surgery , Surgical Flaps , Jejunum/surgery
15.
J Mater Chem B ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38716837

Constructing metal-organic gels (MOGs) with enzyme-catalyzed activity and studying their catalytic mechanism are crucial for the development of novel nanozyme materials. In this study, a Co@Fe MOG with excellent peroxidase activity was developed by a simple and mild one-pot process. The results showed that the material exhibited almost a single peroxidase activity under optimal pH conditions, which allowed it to attract and oxidize the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Based on the active electron transfer between the metal centers and the organic ligand in the synthetic material, the Co@Fe MOG-H2O2-TMB system was verified to be able to detect H2O2 and citric acid (CA). The catalytic microenvironment formed by the adsorption and the catalytic center accelerated the electron-transfer rate, which expedited the generation of hydroxyl radicals (˙OH, a kind of reactive oxygen species (ROS)) in the presence of H2O2. The persistence and high intensity of ˙OH generation were proven, which would endow Co@Fe MOG with a certain antibacterial ability, promoting the healing of bacteria-infected wounds. In conclusion, this study contributes to the development efforts toward the application systems of nanozymes for marker detection and antibacterial activity.

16.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732009

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Flowers , Gene Expression Regulation, Plant , Light , Plant Growth Regulators , Seasons , Plant Growth Regulators/metabolism , Flowers/metabolism , Flowers/growth & development , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Gibberellins/metabolism , Ipomoea nil/metabolism , Ipomoea nil/genetics , Transcriptome , Gene Expression Profiling , Cyclopentanes , Oxylipins
17.
Talanta ; 275: 126148, 2024 May 04.
Article En | MEDLINE | ID: mdl-38705016

Latent fingerprints, as one of the most frequently encountered traces in crime scene investigation and also one of the largest sources of forensic evidence, can play a critical role in determining the identity of a person who may be involved in a crime. Due to the invisible characteristic of latent fingerprints, exploring efficient techniques to visualize them (especially the ones resided on metallic surfaces) while retain the biological and chemical information (e.g., touch DNA) has become a multidisciplinary research focus. Herein we reported a new and highly sensitive electrochemical interfacial strategy of simultaneously developing and enhancing latent fingerprints on stainless steel based on synchronous electrodeposition and electrochromism of manganese oxides in a neutral aqueous electrolyte. By utilizing a specially designed device for electrochemical testing and image capture, a series of electrochemical measurements, physical characterization and image analysis have been applied to evaluate the feasibility, development accuracy and enhancement efficacy of the proposed electrochemical system. The qualitative and quantitative analysis on the in situ and ex situ fingerprint images indicates that the three levels of fingerprint features can be precisely developed and effectively enhanced. Forensic DNA typing has also been performed to reveal actual impact of the proposed electrochemical system on subsequent analysis of touch DNA in fingerprint residues. The ratio of detected loci after electrochemical treatment reaches up to 98.5 %, showing non-destructive nature of this fingerprint development and enhancement technique.

18.
ChemMedChem ; : e202400120, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696276

Mitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria-targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal-based mitochondria-targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.

19.
Drug Des Devel Ther ; 18: 1673-1694, 2024.
Article En | MEDLINE | ID: mdl-38779590

Pristimerin, a natural triterpenoid isolated from the plants of southern snake vine and Maidenwood in the family Weseraceae, is anti-inflammatory, insecticidal, antibacterial, and antiviral substance and has been used for its cardioprotective and antitumor effects and in osteoporosis treatment. These qualities explain Pristimerin's therapeutic effects on different types of tumors and other diseases. More and more studies have shown that pristimerin acts in a wide range of biological activities and has shown great potential in various fields of modern and Chinese medicine. While Pristimerin's wide range of pharmacological effects have been widely studied by others, our comprehensive review suggests that its mechanism of action may be through affecting fundamental cellular events, including blocking the cell cycle, inducing apoptosis and autophagy, and inhibiting cell migration and invasion, or through activating or inhibiting certain key molecules in several cell signaling pathways, including nuclear factor κB (NF-κB), phosphatidylinositol 3-kinase/protein kinase B/mammalian-targeted macromycin (PI3K/Akt/mTOR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase 1/2 (ERK1/2), Jun amino-terminal kinase (JNK1/2/3), reactive oxygen species (ROS), wingless/integrin1 (Wnt)/ß-catenin, and other signaling pathways. This paper reviews the research progress of Pristimerin's pharmacological mechanism of action in recent years to provide a theoretical basis for the molecular targeting therapy and further development and utilization of Pristimerin. It also provides insights into improved treatments and therapies for clinical patients and the need to explore pristimerin as a potential facet of treatment.


Pentacyclic Triterpenes , Signal Transduction , Animals , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Pentacyclic Triterpenes/pharmacology , Signal Transduction/drug effects , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification
20.
J Clin Psychiatry ; 85(2)2024 May 13.
Article En | MEDLINE | ID: mdl-38767936

Objective: This study examined the effects of a multicomponent intervention program on cognitive function in community-dwelling older adults with mild cognitive impairment (MCI) and subjective cognitive decline (SCD).Methods: This was a 2-arm, randomized controlled trial in which a multicomponent intervention was applied. Participants were recruited from June 2020 to August 2020, randomization and intervention began in August 2020, and the entire program ended in January 2021. It included cognitive training (mnemonic strategy training) and lifestyle guidance (diet, sleep, and exercise guidance) for 7 weeks. A total of 123 Chinese community-dwelling older adults experiencing MCI or SCD were randomly divided into a multicomponent intervention group (n = 62) and a health education group (n = 61). The global cognitive function was measured using the Mini-Mental State Examination (MMSE). The cognitive domains outcomes included memory functions measured using the immediate and delayed tests of the Auditory Verbal Learning Test (AVLT) and Logical Memory Test (LMT), and executive function and attention measured using the Digital Symbol Substitution Test (DSST) and Digit Span Test (DST). Data were collected at baseline and postintervention.Results: For cognitive outcome, the results of linear mixed-effect model showed significant time × group effects in the MMSE (Cohen d =0.63 [95% CI, 0.27 to 1.00], F = 10.25, P = .002). This study found significant time × group effects in AVLT-immediate (Cohen d = 0.47 [95% CI, 0.11 to 0.83], F = 8.18, P = .005), AVLT delayed (Cohen d = 0.45 [95% CI, 0.10 to 0.81], F = 4.59, P = .034), LMT-delayed (Cohen d = 0.71 [95% CI, 0.34 to 1.07], F = 4.59, P = .034), DSST (Cohen d = 0.27 [95% CI, -0.08 to 0.63], F = 4.83, P = .030), and DST (Cohen d =0.69 [95% CI, 0.33 to 1.05], F = 8.58, P = .004).Conclusions and Implications: The results support the feasibility and effectiveness of the multicomponent intervention program in improving cognitive function in community dwelling older adults at risk of dementia. The high adherence of this program shows its potential for promotion in the community and supports a larger and longer trial.Trial Registration: Chinese Clinical Trial Registry (ChiCTR2200061420).


Cognitive Dysfunction , Humans , Male , Female , Aged , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/therapy , Dementia/prevention & control , Life Style , Independent Living , Middle Aged , Cognitive Behavioral Therapy/methods , Executive Function , China , Cognitive Training
...