Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nanoscale ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39104187

ABSTRACT

Memristive systems have potential applications in nonvolatile memories and even unexplored functionalities in electronics. However, progress has been delayed by difficulties in the controllability of memory behaviors and the dependence on material conductivity. Considering this, a new depletion-region width modulation model is proposed to realize and explain memory characteristics. The coexistence of memristive and memcapacitive behaviors is demonstrated in p-CuAlO2/n-ZnO, p+-Si/n-ZnO and p-NiO/n-ZnO heterostructure devices. A high external electric field induces the migration of oxygen ions and electrons/holes between the p-type and n-type semiconductor layers. It can regulate the oxygen vacancy concentration of the n-type side and cation vacancy concentration of the p-type side, changing the depletion-region width and modulating device conductivity and capacitance. Several essential synaptic functions were accurately imitated, including spike-timing-dependent plasticity (STDP) and "learning-experience" behaviors. This work provides new opportunities in fabricating a memristor and memcapacitor based on a PN heterostructure for synaptic simulation.

2.
ACS Appl Mater Interfaces ; 16(21): 27866-27874, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747412

ABSTRACT

Optoelectronic memristors are new multifunctional devices with both electrically tunable and light-tunable synaptic plasticity, attracting great attention as key promising devices for optoelectronic neuromorphic computing systems. At present, the conductance modulation in most optoelectronic memristors is conducted in a hybrid photoelectric mode, suffering some problems such as heat generation and control complexity. Here, an optoelectronic memristor based on the p+-Si/n-ZnO heterojunction is proposed where the conductance can be reversibly modulated in an all-optically controlled mode. The electron detrapping/trapping mechanism at the p+-Si/n-ZnO interface barrier region is presented to explain the light-induced conductance potentiation/depression behavior. Furthermore, some synaptic functions, including excitatory postsynaptic current (EPSC), inhibitory postsynaptic current (IPSC), and paired-pulse facilitation (PPF), are successfully mimicked in the p+-Si/n-ZnO heterojunction memristor, instructing its application potential for optoelectronic neuromorphic computing.

3.
FASEB J ; 38(7): e23604, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38591106

ABSTRACT

With no lysine/K kinases (WNKs) promote vasocontraction and vascular smooth muscle cell proliferation. In the prostate, smooth muscle contraction and growth may be critical for the development and medical treatment of voiding symptoms in benign prostatic hyperplasia. Here, we examined the effects of isoform-specific WNK silencing and of the WNK inhibitor WNK463 on growth-related functions and contraction in prostate stromal cells, and in human prostate tissues. Impacts of WNK silencing by transfection of cultured stromal cells with isoform-specific siRNAs were qualitatively and quantitatively similar for each WNK isoform. Effects of silencing were largest on cell death (3-5 fold increase in annexin V-positive/7-AAD-positive cells), on proliferation rate, Ki-67 mRNA expression and actin organization (reduced around two-thirds). Contraction in matrix contraction assays and viability were reduced to a lower degree (approximately half), but again to a similar extent for each WNK isoform. Effects of silencing were quantitatively and qualitatively reproduced by 10 µM WNK463, while 1 µM still induced cell death and breakdown in actin organization, without affecting proliferation or viability. Using 500 nM and 10 µM, WNK463 partly inhibited neurogenic and U46619-induced contractions of human prostate tissues (around half), while inhibition of α1-adrenergic contractions (around half) was limited to 10 µM. All four WNK isoforms suppress cell death and promote proliferation in prostate stromal cells. WNK-driven contraction of stromal cells appears possible, even though to a limited extent. Outcomes of isoform-specific WNK silencing can be fully reproduced by WNK463, including inhibition of smooth muscle contraction in human prostate tissues, but require high concentrations.


Subject(s)
Actins , Prostate , Male , Humans , Actins/metabolism , Muscle Contraction/physiology , Stromal Cells/metabolism , Cell Proliferation , Protein Isoforms/metabolism
4.
Molecules ; 29(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542992

ABSTRACT

Iodine, primarily in the form of iodide (I-), is the bioavailable form for the thyroid in the human body. Both deficiency and excess intake of iodide can lead to serious health issues, such as thyroid disease. Selecting iodide ions among anions has been a significant challenge for decades due to interference from other anions. In this study, we designed and synthesized a new pincer-type acridine-triazole fluorescent probe (probe 1) with an acridine ring as a spacer and a triazole as a linking arm attached to two naphthol groups. This probe can selectively recognize iodide ions in a mixed solvent of THF/H2O (v/v, 9/1), changing its color from colorless to light yellow, making it suitable for highly sensitive and selective colorimetric and fluorescent detection in water systems. We also synthesized another molecular tweezer-type acridine-triazole fluorescent probe (probe 2) that exhibits uniform detection characteristics for iodide ions in the acetonitrile system. Interestingly, compared to probe 2, probe 1 can be detected by the naked eye due to its circulation effect, providing a simple method for iodine detection. The detection limit of probe 1 is determined to be 10-8 mol·L-1 by spectrometric titration and isothermal titration calorimetry measurements. The binding stoichiometry between probe 1 and iodide ions is calculated to be 1:1 by these methods, and the binding constant is 2 × 105 mol·L-1.

5.
Pathol Res Pract ; 254: 155154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38286054

ABSTRACT

The serine/threonine kinase (STK) 33 plays a key role in cancer cell proliferation and metastasis. Abnormal STK33 expression is closely related to malignancy of numerous cancers. This study suggests the important role of STK33 in the pathogenesis and metastatic progression of esophageal squamous cell carcinoma (ESCC). STK33 expression in human ESCC tissues was detected by immunohistochemical technique. Further, we analyzed the relationship between STK33 and clinical and pathological factors as well as the prognosis of patients. ECa109 cell line was cultured and transfected with STK33-RNAi lentiviral vector to perform Hochest33342 & PI and metastasis experiments. The TCGA database was used to analyze the STK33 expression level in ESCC. All statistical analyses were performed in SPSS 23.0 software. Differences with P < 0.05 were considered statistically significant. In human ESCC specimens, STK33 was overexpressed and associated with poor prognosis. Silencing STK33 expression suppressed ESCC proliferation, migration, invasion, and tumor growth. STK33 also mediated angiogenesis, TGFß, and inflammatory response in ESCC. Mechanistic investigations revealed that STK33 regulates ESCC through multiple complex pathways. Dysregulated STK33 signaling promotes ESCC growth and progression. Thus, our findings identified STK33 as a candidate treatment target that improves ESCC therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Cell Line, Tumor , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Proliferation/genetics , Serine/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics
6.
Am J Hosp Palliat Care ; 41(9): 1002-1010, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38100655

ABSTRACT

Background: Opioid therapy is critical for pain relief for most hospice patients but may be limited by adverse side effects. Combining medical cannabis with opioids may help mitigate adverse effects while maintaining effective pain relief. Aim: This single-arm study investigated the impact of combined medical cannabis/opioid therapy on pain relief, opioid dose, appetite, respiratory function, well-being, nausea, and adverse events in hospice inpatients. Design: Adult hospice inpatients using scheduled oral, parenteral, or transdermal opioids for pain were administered standardized oral medical cannabis, 40 mg CBD/1.5 mg THC or 80 mg CBD/3 mg THC. Descriptive statistics detailed demographic and clinical baseline characteristics, the Mann-Whitney test compared outcomes, and the longitudinal mixed effects regression model analyzed longitudinal effects of combined therapy. Setting/Participants: Sixty-six inpatients at The Connecticut Hospital, Inc. were assessed over 996 treatment days; average age was 68.2 ± 12.9 years, 90.9% were white. Cancer was the most common diagnosis. Results: The medical cannabis/opioid combination showed a significant longitudinal reduction in pain intensity (P = .0029) and a non-significant trend toward lower opioid doses. Well-being, appetite, nausea, and respiratory function showed non-statistically significant changes. Three patients (4.5%) experienced minor, reversible adverse events potentially related to medical cannabis. No serious or life-threatening adverse events were seen. Conclusion: Combination medical cannabis/opioid therapy showed statistically significant pain relief and may have the potential for reducing opioid dose and mitigating opioid toxicity, offering a safe pain management alternative to opioids alone for patients in end-of-life care settings, and warrants further investigation in larger controlled trials.


Subject(s)
Analgesics, Opioid , Hospice Care , Medical Marijuana , Pain Management , Humans , Male , Female , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/adverse effects , Aged , Middle Aged , Medical Marijuana/therapeutic use , Medical Marijuana/administration & dosage , Medical Marijuana/adverse effects , Pain Management/methods , Aged, 80 and over , Nausea/drug therapy , Nausea/chemically induced , Appetite/drug effects , Drug Therapy, Combination , Pain/drug therapy , Adult , Connecticut
7.
J Clin Transl Sci ; 7(1): e240, 2023.
Article in English | MEDLINE | ID: mdl-38028342

ABSTRACT

We conducted a literature review to identify commonly used recruitment and retention strategies in research among adolescent and young adult (AYA) cancer survivors 15-39 years of age and examine the effectiveness of these strategies based on the reported recruitment and retention rates. We identified 18 publications published after 2010, including 14 articles describing recruitment strategies and four articles discussing retention strategies and addressing reasons for AYA cancer patients dropping out of the studies. In terms of recruitment, Internet and social networking strategies were used most frequently and resulted in higher participation rates of AYA cancer survivors compared to other conventional methods, such as hospital-based outreach, mailings, and phone calls. In terms of retention, investigators used monetary incentives in all four studies and regular emails in two studies. There was no association between the number of strategies employed and the overall recruitment (p = 0.09) and retention rates (p = 0.33). Future research and planned studies testing recruitment and retention strategies are needed to identify optimal, modern communication procedures to increase AYA participation and adherence. More education should be provided to AYAs to increase their knowledge of research studies and strengthen the connection between AYA cancer survivors and their health providers.

8.
BMC Endocr Disord ; 23(1): 173, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580706

ABSTRACT

BACKGROUND: Collision and composite carcinomas of the thyroid are extremely rare, and their clinical and biological characteristics are poorly understood. CASE PRESENTATION: The first case was a 41-year-old female patient with a right thyroid nodule. Pathological diagnosis was papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma composite carcinoma. Surgical treatment was right thyroid lobectomy + left partial thyroidectomy + right central neck lymph node dissection. The second case was a 60-year-old female with bilateral thyroid nodules. Total thyroidectomy was performed, and the pathological diagnosis was thyroid collision carcinoma involving follicular thyroid carcinoma on the left side and PTC on the right side. The clinical, histological and gene changes of collision and composite carcinomas of the thyroid are poorly described. With different biological invasion characteristics, the ideal treatment and the prognosis is currently unknown and individualized treatment is necessary. CONCLUSIONS: It is recommended that in composite carcinoma, each cancer is evaluated and treated according to the most severe tumor. Collision carcinoma should be treated as two separate synchronous primary tumors. For both collision and composite carcinomas of the thyroid, the follow-up after treatment should be extensive.


Subject(s)
Carcinoma, Neuroendocrine , Carcinoma, Papillary , Neoplasms, Multiple Primary , Thyroid Neoplasms , Thyroid Nodule , Female , Humans , Adult , Middle Aged , Clinical Relevance , Carcinoma, Papillary/surgery , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Thyroidectomy , Thyroid Cancer, Papillary/surgery , Thyroid Nodule/surgery , Neoplasms, Multiple Primary/surgery , Neoplasms, Multiple Primary/pathology , Carcinoma, Neuroendocrine/surgery
9.
Life Sci ; 329: 121928, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37437651

ABSTRACT

BACKGROUND: Prostate smooth muscle contraction and stromal growth may contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia, but are incompletely understood. A role of the monomeric GTPase CDC42 for smooth muscle contraction and proliferation appears possible, but is unknown for the prostate. Here, we silenced CDC42 expression in prostate stromal cells (WPMY-1), and examined contractility, growth-related functions and responses to the presumed CDC42 inhibitor, ML141. METHODS: WPMY-1 cells were transfected with scrambled or CDC42-specific siRNA, and characterized for GTPase activities, contraction, proliferation, colony formation, apoptosis, cell death and viability. Effects of ML141 were examined in cells with and without silencing. RESULTS: CDC42 silencing was confirmed by reduced mRNA and protein expression, and reduced CDC42 activity. Silencing impaired contraction (23-47 %), actin organization (25 %), proliferation (17-63 %), colony formation and viability (64-89 %), and increased the percentage of dead cells (2.6-fold). ML141 mimicked the phenotype of silencing in scrambled siRNA-transfected controls, and in non-transfected WPMY-1 cells, including inhibition of contraction, proliferation, colony formation and viability, breakdown of actin organization and increased cell death. In CDC42-silenced cells, ML141 still affected phalloiding organization, proliferation and cell death, with effect sizes resembling controls without silencing. ML141 inhibited RhoA activity in CDC42-silenced cells, but not in cells without silencing. CONCLUSIONS: CDC42 promotes contraction of prostate stromal cells, and drives stromal growth by CDC42-mediated proliferation and suppression of apoptosis-independent cell death. ML141 mimicks all effects of CDC42 silencing, but its specificity may be limited and depends on GTPase phenotypes of cells.


Subject(s)
Prostate , Prostatic Hyperplasia , Humans , Male , Prostate/metabolism , Actins/genetics , Actins/metabolism , Cell Proliferation/genetics , Muscle, Smooth , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/metabolism , Stromal Cells/metabolism , Muscle Contraction , RNA, Small Interfering/metabolism , GTP Phosphohydrolases/metabolism
10.
Front Pharmacol ; 14: 1105427, 2023.
Article in English | MEDLINE | ID: mdl-37188272

ABSTRACT

Background: NUAKs promote myosin light chain phosphorlyation, actin organization, proliferation and suppression of cell death in non-muscle cells, which are critical for smooth muscle contraction and growth. In benign prostatic hyperplasia (BPH), contraction and growth in the prostate drive urethral obstruction and voiding symptoms. However, a role of NUAKs in smooth muscle contraction or prostate functions are unknown. Here, we examined effects of NUAK silencing and the presumed NUAK inhibitors, HTH01-015 and WZ4003 on contraction and growth-related functions in prostate stromal cells (WPMY-1) and in human prostate tissues. Methods: Effects of NUAK1 and -2 silencing, HTH01-015 and WZ4003 on matrix plug contraction, proliferation (EdU assay, Ki-67 mRNA), apoptosis and cell death (flowcytometry), viability (CCK-8) and actin organization (phalloidin staining) were examined in cultured WPMY-1 cells. Effects of HTH01-015 and WZ4003 on smooth muscle contraction were assessed in organ bath experirments with human prostate tissues. Results: Effects of silencing were most pronounced on proliferation and cell death, resulting in decreases of proliferation rate by 60% and 70% by silencing of NUAK1 and NUAK2 (compared to scramble siRNA-transfected controls), decreases in Ki-67 by 75% and 77%, while numbers of dead cells after silencing of NUAK1 and NUAK2 amounted to 2.8 and 4.9 fold of scramble-transfected controls. Silencing of each isoform was paralleled by reduced viability, breakdown in actin polymerization, and partial decreases in contractility (maximally 45% by NUAK1 silencing, 58% by NUAK2 silencing). Effects of silencing were mimicked by HTH01-015 and WZ4003, with numbers of dead cells amounting up to 16.1 fold or 7.8 fold with HTH01-015 or WZ4003, compared to solvent-treated controls. Using concentrations of 500 nM, neurogenic contractions of prostate tissues were inhibited partly by HTH01-015 and U46619-induced contractions were inhibited partly by HTH01-015 and WZ4003, while α1-adrenergic and endothelin-1-induced contractions remained unaffected. Using 10 µM, inhibition of endothelin-1-induced contractions by both inhibitors and inhibition of α1-adrenergic contractions by HTH01-015 added to effects seen by 500 nM. Conclusion: NUAK1 and -2 suppress cell death and promote proliferation in prostate stromal cells. A role in stromal hyperplasia appears possible in BPH. Effects of NUAK silencing are mimicked by HTH01-015 and WZ4003.

11.
Polymers (Basel) ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37112024

ABSTRACT

The non-invasive tissue adhesives with strong tissue adhesion and good biocompatibility are ideal for replacing traditional wound treatment methods such as sutures and needles. The self-healing hydrogels based on dynamic reversible crosslinking can recover their structure and function after damage, which is suitable for the application scenario of tissue adhesives. Herein, inspired by mussel adhesive proteins, we propose a facile strategy to achieve an injectable hydrogel (DACS hydrogel) by grafting dopamine (DOPA) onto hyaluronic acid (HA) and mixing it with carboxymethyl chitosan (CMCS) solution. The gelation time and rheological and swelling properties of the hydrogel can be controlled conveniently by adjusting the substitution degree of the catechol group and the concentration of raw materials. More importantly, the hydrogel exhibited rapid and highly efficient self-healing ability and excellent biodegradation and biocompatibility in vitro. Meanwhile, the hydrogel exhibited ~4-fold enhanced wet tissue adhesion strength (21.41 kPa) over the commercial fibrin glue. This kind of HA-based mussel biomimetic self-healing hydrogel is expected to be used as a multifunctional tissue adhesive material.

12.
Adv Mater ; 35(26): e2211461, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36946678

ABSTRACT

Hard carbons, as one of the most commercializable anode materials for sodium-ion batteries (SIBs), have to deal with the trade-off between the rate capability and specific capacity or initial Columbic efficiency (ICE), and the fast performance decline at low temperature (LT) remains poorly understood. Here, a comprehensive regulation on the interfacial/bulk electrochemistry of hard carbons through atomic Zn doping is reported, which demonstrates a record-high reversible capacity (546 mAh g-1 ), decent ICE (84%), remarkable rate capability (140 mAh g-1 @ 50 A g-1 ), and excellent LT capacity (443 mAh g-1 @ -40 °C), outperforming the state-of-the-art literature. This work reveals that the Zn doping can generally induce a local electric field to enable fast bulk Na+ transportation, and meanwhile catalyze the decomposition of NaPF6 to form a robust inorganic-rich solid-electrolyte interphase, which elaborates the underlying origin of the boosted electrochemical performance. Importantly, distinguished from room temperature, the intrinsic Na+ migration/desolvation ability of the electrolyte is disclosed to be the crucial rate-determining factors for the SIB performance at LT. This work provides a fundamental understanding on the charge-storage kinetics at varied temperatures.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965733

ABSTRACT

@#[摘 要] 目的:探讨阿曼托双黄酮(AF)对甲状腺癌SW579细胞中JAK2-STAT3通路活化及其细胞增殖和凋亡的影响。方法:用0、50、100、150、200 μmol/L的AF处理SW579细胞24、48、72 h,采用CCK-8和Celigo计数、FCM、WB及qPCR法检测AF对SW579细胞的增殖、凋亡、JAK2-STAT3通路活化及其下游调控基因c-Myc、Bcl2、survivin的mRNA及蛋白表达水平的影响。结果:AF处理后,SW579细胞增殖能力显著下降(P<0.05)且呈浓度依赖性,细胞凋亡呈浓度依赖性增多(P<0.05),细胞中JAK2-STAT3通路的活化受到显著抑制(P<0.05),其下游基因c-Myc、Bcl2、survivin的mRNA及蛋白表达均明显下降(均P<0.05)。结论:AF可通过抑制SW579细胞中JAK2-STAT3通路活化及其下游基因的表达而抑制SW579细胞的增殖并促进其凋亡,有望成为治疗甲状腺癌的有效药物。

14.
Life Sci ; 308: 120931, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36084760

ABSTRACT

AIMS: Recently, the European Association of Urology recommended hexane-extracted fruit of Serenoa repens (HESr) in their guidelines on management of non-neurogenic male lower urinary tracts symptoms (LUTS). Despite previously lacking recommendations, Permixon® is the most investigated HESr in clinical trials, where it proved effective for male LUTS. In contrast, underlying mechanisms were rarely addressed and are only marginally understood. We therefore investigated effects of Permixon® on human prostate and detrusor smooth muscle contraction and on growth-related functions in prostate stromal cells. MAIN METHODS: Permixon® capsules were dissolved using n-hexane. Contractions of human prostate and detrusor tissues were induced in organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). KEY FINDINGS: Permixon® inhibited α1-adrenergic and thromboxane-induced contractions in prostate tissues, and methacholine-and thromboxane-induced contractions in detrusor tissues. Endothelin-1-induced contractions were not inhibited. Neurogenic contractions were inhibited in both tissues in a concentration-dependent manner. In WPMY-1 cells, Permixon® caused concentration-dependent breakdown of actin polymerization, inhibited colony formation, reduced cell viability, and proliferation, without showing cytotoxic or pro-apoptotic effects. SIGNIFICANCE: Our results provide a novel basis that allows, for the first time, to fully explain the ubiquitous beneficial effects of HESr in clinical trials. HESr may inhibit at least neurogenic, α1-adrenergic and thromboxane-induced smooth muscle contraction in the prostate and detrusor, and in parallel, prostate stromal cell growth. Together, this may explain symptom improvements by Permixon® in previous clinical trials.


Subject(s)
Prostatic Hyperplasia , Serenoa , Actins/metabolism , Adrenergic Agents/pharmacology , Endothelin-1/metabolism , Hexanes/metabolism , Hexanes/pharmacology , Hexanes/therapeutic use , Humans , Male , Methacholine Chloride/metabolism , Muscle Contraction , Muscle, Smooth , Phalloidine/metabolism , Phalloidine/pharmacology , Phalloidine/therapeutic use , Plant Extracts/therapeutic use , Prostate/metabolism , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Sincalide/metabolism , Stromal Cells/metabolism , Thromboxanes/metabolism , Urinary Bladder/metabolism
15.
Front Physiol ; 13: 884057, 2022.
Article in English | MEDLINE | ID: mdl-35677088

ABSTRACT

Introduction: Lower urinary tract symptoms (LUTS) involve benign prostatic hyperplasia (BPH) and overactive bladder (OAB). Standard-of-care medical treatment includes α1-blockers and antimuscarinics for reduction of prostate and detrusor smooth muscle tone, respectively, and 5α-reductase inhibitors (5-ARI) to prevent prostate growth. Current medications are marked by high discontinuation rates due to unfavourable balance between efficacy and treatment-limiting side effects, ranging from dry mouth for antimuscarinics to cardiovascular dysregulation and a tendency to fall for α1-blockers, which results from hypotension, due to vasorelaxation. Agonist-induced smooth muscle contractions are caused by activation of receptor-coupled G-proteins. However, little is known about receptor- and organ-specific differences in coupling to G-proteins. With YM-254890, a small molecule inhibitor with presumed specificity for Gαq/11 became recently available. Here, we investigated effects of YM-254890 on prostate, bladder and vascular smooth muscle contraction, and on growth-related functions in prostate stromal cells. Methods: Contractions of human prostate and detrusor tissues, porcine renal and coronary arteries were induced in an organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). Results: Contractions by α1-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were nearly completely inhibited by YM-254890 (30 nM) in prostate tissues. Contractions by cholinergic agonists, U46619, endothelin-1, and neurogenic contractions were only partly inhibited in detrusor tissues. Contractions by α1-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were strongly, but not fully inhibited in renal arteries. Contractions by cholinergic agonists were completely, but by U46619 and endothelin-1 only strongly inhibited, and neurogenic contractions reduced by half in coronary arteries. YM-254890 had no effect on agonist-independent contractions induced by highmolar (80 mM) potassium chloride (KCl). Neurogenic detrusor contractions were fully sensitive to tetrodotoxin. In WPMY-1 cells, YM-254890 caused breakdown of actin polymerization and organization, and obvious, but clearly limited decreases of proliferation rate, colony formation and viability, and slightly increased apoptosis. Conclusion: Intracellular post-receptor signaling pathways are shared by Gαq-coupled contractile receptors in multiple smooth muscle-rich organs, but to different extent. While inhibition of Gαq/11 causes actin breakdown, anti-proliferative effects were detectable but clearly limited. Together this may aid in developing future pharmaceutical targets for LUTS and antihypertensive medication.

16.
Prostate ; 82(1): 59-77, 2022 01.
Article in English | MEDLINE | ID: mdl-34633103

ABSTRACT

INTRODUCTION: Prostate smooth muscle contraction is promoted by receptor-induced activation of intracellular signaling pathways. The presumed involvement in etiology and medical treatment of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) imparts a high clinical relevance to prostate smooth muscle contraction, which is contrasted by incomplete understanding at the molecular level. Involvement of protein kinase C (PKC) has been commonly assumed, but available studies were limited to nonhuman prostate smooth muscle or cell cultures. Here, we examined the effects of the PKC inhibitors Go6983 and GF109203x on contractions of human prostate tissues. METHODS: Prostate tissues were obtained from radical prostatectomy. Contractions were induced by electric field stimulation (EFS), α1 -adrenergic agonists (noradrenaline, phenylephrine, methoxamine), thromboxane A2 analog U46619, endothelin-1, or calcium chloride in an organ bath. RESULTS: GF109203X (500 nM) and Go6983 (300 nM) reduced EFS-, noradrenaline-, phenylephrine-, methoxamine-, and U46619-induced contractions of human prostate tissues, with maximum inhibitions approaching up to 55%. Using concentrations of 3 µM, GF109203X and Go6983 inhibited EFS- and noradrenaline-induced contractions, with similar effect sizes as 500 and 300 nM, respectively. Endothelin-1-induced contractions were not inhibited by GF109203X, and to neglectable extent by Go6983. After depolarization in calcium-free solution, calcium chloride-induced concentration-dependent contractions, which were inhibited by GF109203X and Go6983. CONCLUSIONS: GF109203X and Go6983 inhibit neurogenic, α1 -adrenergic, and thromboxane A2 -induced smooth muscle contractions in the human prostate, suggesting a role of PKC for human prostate smooth muscle contraction. The inhibition may by be imparted by inhibition of calcium sensitivity.


Subject(s)
Indoles/pharmacology , Maleimides/pharmacology , Prostatic Hyperplasia , Protein Kinase C , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/physiopathology , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/physiopathology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology
17.
Polymers (Basel) ; 13(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34960874

ABSTRACT

In order to replace traditional wound treatments such as sutures, tissue adhesives with strong wet tissue adhesion and biocompatibility have attracted more attention to the applications of non-invasive wound closure. Herein, inspired by tunicate adhesive protein, a series of 2,3,4-trihydroxybenzaldehyde (TBA)-modified chitosan hydrogels (CS-TBA-Fe) were prepared by easily mixing the solutions of chitosan-FeCl3 and TBA via the Schiff-base reaction and the coordination between Fe3+ and pyrogallol groups. The gelation time was greatly shortened to only several seconds after induced even trace Fe3+. The hydrogel (CS-TBA-Fe) exhibited ~12-fold enhanced wet tissue adhesion strength (60.3 kPa) over the commercial fibrin glue. Meanwhile, the hydrogel also showed robust adhesion to various substrates such as wood, PMMA, and aluminum. The swelling ratio and rheological property can be simply controlled by changing the concentrations of chitosan, TBA, and Fe3+. Moreover, the hydrogel displayed a rapid and highly efficient self-healing ability and an excellent antibacterial activity against E. coli. The overall results show that the CS-TBA-Fe hydrogel with enhanced wet adhesiveness will be a promising tissue adhesive material.

18.
Ann Transl Med ; 9(17): 1380, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733932

ABSTRACT

BACKGROUND: Integrin α2ß1 inhibitor BTT-3033 (1-(4-fluorophenyl)-N-methyl-N-[4[[(phenylamino)carbonyl]amino]phenyl]-1H-pyrazole-4-sulfonamide) was recently reported to inhibit neurogenic and thromboxane A2-induced human prostate smooth muscle contraction, and thus represents a target with a different inhibition spectrum than that of α1-blockers in benign prostate hyperplasia (BPH) treatments. Clarifying the underlying mechanisms of the inhibition effects will provide insights into the role of integrin α2ß1 in prostate contraction and enable new intracellular targets for smooth muscle contraction to be explored. METHODS: ProteomeHD was used to predict and enrich the top co-regulated proteins of integrin α2 (ITGA2). A phosphoproteomic analysis was conducted on human prostate stromal cells (WPMY-1) treated with 1 or 10 µM of BTT-3033 or solvent for controls. A clustering analysis was conducted to identify the intracellular targets that were inhibited in a dose-dependent manner. Gene ontology (GO) and annotation enrichments were conducted to examine any functional alterations and identify possible downstream targets. A Kinase-substrate enrichment analysis (KSEA) was conducted to identify kinases-substrate relationships. RESULTS: Enrichments of the actin cytoskeleton and guanosine triphosphatases (GTPases) signaling were predicted from the co-regulated proteins with ITGA2. LIM domain kinases, including LIM domain and actin-binding 1 (LIMA1), zyxin (ZYX), and thyroid receptor-interacting protein 6 (TRIP6), which are functionally associated with focal adhesions and the cytoskeleton, were present in the clusters with dose-dependent phosphorylation inhibition pattern. 15 substrates were dose-dependently inhibited according to the KSEA, including polo-like kinase 1 (PLK1), and GTPases signaling proteins, such as disheveled segment polarity protein 2 (DVL2). CONCLUSIONS: In this study, we proposed that the mechanisms underlying the contractile and proliferative effects of integrin α2ß1 are the LIM domain kinases, including the ZYX family, and substrates, including PLK1 and DVL2.

19.
Front Oncol ; 11: 736654, 2021.
Article in English | MEDLINE | ID: mdl-34671558

ABSTRACT

BACKGROUND: Accurate diagnosis of bone metastasis status of prostate cancer (PCa) is becoming increasingly more important in guiding local and systemic treatment. Positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) have increasingly been utilized globally to assess the bone metastases in PCa. Our meta-analysis was a high-volume series in which the utility of PET/CT with different radioligands was compared to MRI with different parameters in this setting. MATERIALS AND METHODS: Three databases, including Medline, Embase, and Cochrane Library, were searched to retrieve original trials from their inception to August 31, 2019 according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. The methodological quality of the included studies was assessed by two independent investigators utilizing Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). A Bayesian network meta-analysis was performed using an arm-based model. Absolute sensitivity and specificity, relative sensitivity and specificity, diagnostic odds ratio (DOR), and superiority index, and their associated 95% confidence intervals (CI) were used to assess the diagnostic value. RESULTS: Forty-five studies with 2,843 patients and 4,263 lesions were identified. Network meta-analysis reveals that 68Ga-labeled prostate membrane antigen (68Ga-PSMA) PET/CT has the highest superiority index (7.30) with the sensitivity of 0.91 and specificity of 0.99, followed by 18F-NaF, 11C-choline, 18F-choline, 18F-fludeoxyglucose (FDG), and 18F-fluciclovine PET/CT. The use of high magnetic field strength, multisequence, diffusion-weighted imaging (DWI), and more imaging planes will increase the diagnostic value of MRI for the detection of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT was performed in the detection of bone metastasis on patient-based level (sensitivity, 0.94 vs. 0.91; specificity, 0.94 vs. 0.96; superiority index, 4.43 vs. 4.56). CONCLUSIONS: 68Ga-PSMA PET/CT is recommended for the diagnosis of bone metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI approaches 68Ga-PSMA PET/CT should be performed in the detection of bone metastasis.

20.
Acta Pharm Sin B ; 11(7): 1914-1930, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386328

ABSTRACT

Overactive bladder (OAB) is the most bothersome symptom in lower urinary tract symptoms (LUTS). Current pharmacologic treatment aims to inhibit detrusor contraction; however, shows unsatisfied efficacy and high discontinuation rate. LIM kinases (LIMKs) promote smooth muscle contraction in the prostate; however, their function in the bladder smooth muscle remains unclear. Here, we studied effects of the LIMK inhibitors on bladder smooth muscle contraction and proliferation both in vitro and in vivo experiments. Bladder expressions of LIMKs are elevated in OAB rat detrusor tissues. Two LIMK inhibitors, SR7826 and LIMKi3, inhibit contraction of human detrusor strip, and cause actin filament breakdown, as well as cell proliferation reduction in cultured human bladder smooth muscle cells (HBSMCs), paralleled by reduced cofilin phosphorylation. Silencing of LIMK1 and LIMK2 in HBSMCs resulted in breakdown of actin filaments and decreased cell proliferation. Treatment with SR7826 or LIMKi3 decreased micturition frequency and bladder detrusor hypertrophy in rats with bladder outlet obstruction. Our study suggests that LIMKs may promote contraction and proliferation in the bladder smooth muscle, which could be inhibited by small molecule LIMK inhibitors. LIMK inhibitors could be a potential therapeutic strategy for OAB- related LUTS.

SELECTION OF CITATIONS
SEARCH DETAIL