Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 133: 112096, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38657496

ABSTRACT

Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. NOD-like receptor protein 3 (NLRP3) inflammation is involved in the development of myocarditis and is closely related to the form of cell death. Inhibiting pyroptosis mediated by NLRP3 inflammasome can reduce cardiac fibrosis, although its exact mechanism remains unknown. In this study, we induced Viral myocarditis (VMC) via infection of CVB3 to explore the relationship between pyroptosis and fibrosis. Our results showed that intraperitoneal injection of an NLRP3 inhibitor MCC950 or use of NLRP3-/- mice inhibited cardiac pyroptosis mediated by NLRP3 inflammasome in VMC. CXCL4 is a chemokine that has been reported to have pro-inflammatory and pro-fibrotic functions. In VMC, we further found that pyroptosis of Mouse myocardial fibroblasts (MCF) promoted the secretion of CXCL4 by activating Wnt/ß-Catenin signaling. Subsequently, the transcriptome sequencing data showed that CXCL4 could promote cardiac fibrosis by activating PI3K/AKT pathway. In summary, infection of CVB3 induced host oxidative stress to further activate the NLRP3 inflammasome and ultimately lead to heart pyroptosis, in which MCF secreted CXCL4 by activating Wnt/ß-Catenin signaling and CXCL4 participated in cardiac fibrosis by activating PI3K/AKT pathway. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.


Subject(s)
Fibrosis , Myocarditis , NLR Family, Pyrin Domain-Containing 3 Protein , Platelet Factor 4 , Pyroptosis , Animals , Humans , Male , Mice , Fibroblasts/metabolism , Furans/pharmacology , Indenes , Inflammasomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocarditis/metabolism , Myocardium/pathology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Platelet Factor 4/metabolism , Signal Transduction , Sulfonamides/pharmacology , Sulfones/pharmacology
2.
Insect Sci ; 31(1): 91-105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37334667

ABSTRACT

Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1-10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1-10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3-5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1-10 can be clustered into 5 clades, with NlApoD3-5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3-5/9, NlApoD3-5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2 O2 , and ultraviolet-C, respectively, indicating their potential roles in stress resistance.


Subject(s)
Hemiptera , Animals , Apolipoproteins D/genetics , Apolipoproteins D/metabolism , Hemiptera/physiology , Phylogeny , RNA Interference
3.
BMC Anesthesiol ; 23(1): 357, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919658

ABSTRACT

BACKGROUND: Tracheobronchomegaly (TBM) is a rare disorder mainly characterized by dilatation and malacia of the trachea and major bronchi with diverticularization. This will be a great challenge for airway management, especially in thoracic surgery requiring one-lung ventilation. Using a laryngeal mask airway and a modified double-lumen Foley catheter (DFC) as a "blocker" may achieve one-lung ventilation. This is the first report introducing this method in a patient with TBM. CASE PRESENTATION: We present a 64-year-old man with TBM receiving left lower lobectomy. Preoperative chest computed tomography demonstrated a prominent tracheobronchial dilation and deformation with multiple diverticularization. The most commonly used double-lumen tube or bronchial blocker could not match the distorted airways. After general anesthesia induction, a 4# laryngeal mask was inserted, through which the modified DFC was positioned in the left main bronchus with the guidance of a fiberoptic bronchoscope. The DFC balloon was inflated with 10 ml air and lung isolation was achieved without any significant air leak during one-lung or two-lung ventilation. However, the collapse of the non-dependent lung was delayed and finally achieved by low-pressure artificial pneumothorax. The surgery was successful and the patient was extubated soon after the surgery. CONCLUSIONS: Using a laryngeal mask airway with a modified double-lumen Foley catheter acted as a bronchial blocker could be an alternative method to achieve lung isolation.


Subject(s)
One-Lung Ventilation , Tracheobronchomegaly , Male , Humans , Middle Aged , Intubation, Intratracheal/methods , Airway Management , Trachea , One-Lung Ventilation/methods
4.
Pest Manag Sci ; 79(1): 415-427, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36177946

ABSTRACT

BACKGROUND: The brown planthopper (BPH) is one of the most destructive agricultural pests in Asia. RNA interference (RNAi)-mediated pest management has been under development for years, and the selection of appropriate target genes is important for pest-targeted RNAi. C-type lectins (CTLs) are a class of genes that perform a variety of functions, such as the regulation of growth and development. RESULTS: A CTL-S protein named Nllet1, containing a single calcium ion (Ca2+ )-dependent carbohydrate-binding domain (CRD) with a conserved triplet motif QPD was identified and functionally characterized in BPH. Expression profiles at both the transcriptional and translational levels show that Nllet1 accumulates during the serosal cuticle (SC) formation period. Immunofluorescence and immunogold labeling further demonstrated that Nllet1 is located in the serosal endocuticle (en-SC). Maternal RNAi-mediated silencing of Nllet1 disrupted the SC structure, accompanied by a loss of the outward barrier and 100% embryo mortality. Injection of 10 ng dsNllet1 or dsNllet1' per female adult BPH resulted in a total failure of egg hatching. CONCLUSION: Nllet1 is essential for SC formation and embryonic development in BPH, which helps us understand the important roles of CTL-Ss. Additionally, BPH eggs show high sensitivity to the depletion of Nllet1. This study indicates that Nllet1 is a promising candidate gene that can be used to develop RNAi-based control strategies at the BPH egg stage, and it can also be used as a target for developing novel ovicides. © 2022 Society of Chemical Industry.


Subject(s)
RNA Interference , Female , Humans , Asia
5.
Arch Virol ; 167(11): 2423-2427, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35999327

ABSTRACT

A novel chuvirus from a southern green stink bug (Nezara viridula) was identified by RNA sequencing in this study and was tentatively named "Ningbo southern green stink bug chuvirus 1" (NBSGSBV-1). The complete genome sequence of NBSGSBV-1 consists of 11,375 nucleotides, and the genome was found to be circular by 'around-the-genome' reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Three open reading frames (ORFs) were predicted in the NBSGSBV-1 genome, encoding a large polymerase protein (L protein), a glycoprotein (G protein), and a nucleocapsid protein (N protein). A phylogenetic tree was constructed based on all of the currently available RNA-dependent RNA polymerase amino acid sequences of viruses of the family Chuviridae, and NBSGSBV-1 was found to cluster together with Sanya chuvirus 2 and Hubei odonate virus 11, indicating that NBSGSBV-1 might belong to the genus Odonatavirus. Five conserved sites were identified in the L proteins of NBSGSBV-1 and other chuviruses. The abundance and characteristics of the NBSGSBV-1-derived small interfering RNAs suggested that NBSGSBV-1 actively replicates in the host insect. To the best of our knowledge, this is the first report of a chuvirus identified in a member of the insect family Pentatomidae. The discovery and characterization of NBSGSBV-1 will help us to understand the diversity of chuviruses in insects.


Subject(s)
Heteroptera , Animals , Nucleocapsid Proteins/genetics , Nucleotides , Phylogeny , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA
6.
ACS Omega ; 6(22): 14629-14638, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34124486

ABSTRACT

Herein, we develop a novel method to synthesize lanthanide-functionalized carbon quantum dots via free-radical copolymerization using the methyl methacrylate (MMA) monomer as a functional monomer and introducing a lanthanide complex to obtain the dual-emission fluorescent composite material FCQDs-Ln(TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone). The obtained composites were fully characterized, and their structures were investigated by Fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Subsequently, a series of white-light-emitting polymer composite films FCQDs- (Eu:Tb)(TFA)3/poly(methyl methacrylate) (PMMA) were designed and synthesized by adjusting the ratio of Eu(TFA)3/Tb(TFA)3 under different wavelengths. More significantly, FCQDs-Tb(TFA)3 was selected as a sensitive probe for sensing metal cations due to excellent photoluminescence properties, revealing a unique capability of FCQDs-Tb(TFA)3 of detecting Fe(III) cations with high efficiency and selectivity. Furthermore, the sensing experiment results indicated that FCQDs-Tb(TFA)3 is ideal as a fluorescent nanoprobe for Fe3+ ion detection, and the lowest detection limit for Fe3+ is 0.158 µM, which is superior to many other previous related research studies. This pioneering work provides a new idea and method for constructing a dual-emission ratio sensor based on carbon quantum dots and also extends the potential application in the biological and environmental fields.

7.
J Dent Sci ; 16(3): 915-921, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34141105

ABSTRACT

BACKGROUND/PURPOSE: Effective regulation of the inflammatory process is essential for pulp repair and regeneration. Meloxicam has anti-inflammatory activity in systemic administration. The purpose of this study is to observe effects of topically applied meloxicam on inflamed pulp and to explore its potential value in the treatment of pulpitis. MATERIALS AND METHODS: The coronal pulp tissues of rat molars were stimulated with 10 mg/mL lipopolysaccharide (LPS group) and then treated with 500 µmol/L meloxicam (meloxicam group). The untreated pulp tissues were used as the control group. After 3 h of incubation in vitro, the gene expression of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in each group was detected by real-time RT-PCR. The pulp tissues of each group were randomly subcutaneously implanted into nude mice, and 500 µmol/L meloxicam was injected into the subcutaneous pocket of the meloxicam group. Haematoxylin eosin staining, Masson staining and immunohistochemical staining were performed on samples after 3 days and 4 weeks retrieval, respectively. RESULTS: Compared with the LPS group, the mRNA expression levels of TNF-α and IL-6 of the meloxicam group were significantly reduced in vitro. The inflammatory response and cyclooxygenase-2 expression of the meloxicam group were decreased, and osteodentin-like tissue was generated in the pulp cross section of the meloxicam group in vivo. CONCLUSION: The topical application of meloxicam inhibits the inflammatory response of inflamed pulp and further promotes the formation of osteodentin-like tissues but fails to induce the formation of the pulp-dentin complex. Topically applied meloxicam has the potential to regulate pulp inflammation.

8.
Huan Jing Ke Xue ; 42(6): 2648-2658, 2021 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-34032064

ABSTRACT

Oxygenated volatile organic compounds (OVOCs) are important intermediates in the troposphere and the most important sources of ozone. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) was used to measure VOCs in the Chengdu Plain, Southwestern China. The diurnal variations, photochemical reactivity, O3 formation potential, and sources were also investigated. The mixing ratios of ten kinds of VOCs (acetaldehyde, acetone, isoprene, Methyl ethyl ketone, Methyl vinyl ketone and Methacrolein, benzene, toluene, styrene, C8 aromatics, and C9 aromatics) were (10.97±4.69)×10-9. The concentrations of OVOCs, aromatic hydrocarbons, and biogenic VOCs were (8.54±3.44)×10-9, (1.53±0.93)×10-9, and (0.90±0.32)×10-9, respectively. Isoprene, acetaldehyde, and m-xylene were the top three photochemically active species with the greatest O3 formation potentials. The dominant three OVOCs species (acetaldehyde, acetone, and MEK) were mainly derived from local biogenic sources and anthropogenic secondary sources, and acetone had a strong regional background level, indicating that pollution in this area is significantly affected by regional transmission. This study deepens the understanding of regional O3 formation mechanisms in southwest China and provides a basis for the scientifically informed control of O3 pollution.

9.
Genomics ; 112(6): 5086-5100, 2020 11.
Article in English | MEDLINE | ID: mdl-32919018

ABSTRACT

MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.


Subject(s)
Exosomes/genetics , MicroRNAs/metabolism , Spinal Cord Injuries/genetics , Animals , Gene Expression Profiling , RNA, Small Untranslated/metabolism , Rats , Real-Time Polymerase Chain Reaction , Spinal Cord Injuries/blood , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
10.
J Neuroinflammation ; 17(1): 255, 2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32861243

ABSTRACT

BACKGROUND: After spinal cord injury (SCI), destructive immune cell subsets are dominant in the local microenvironment, which are the important mechanism of injury. Studies have shown that inflammasomes play an important role in the inflammation following SCI, and apoptosis-associated speck-like protein containing a card (ASC) is the adaptor protein shared by inflammasomes. Therefore, we speculated that inhibiting ASC may improve the local microenvironment of injured spinal cord. Here, CRID3, a blocker of ASC oligomerization, was used to study its effect on the local microenvironment and the possible role in neuroprotection following SCI. METHODS: Murine SCI model was created using an Infinite Horizon impactor at T9 vertebral level with a force of 50 kdynes and CRID3 (50 mg/kg) was intraperitoneally injected following injury. ASC and its downstream molecules in inflammasome signaling pathway were measured by western blot. The immune cell subsets were detected by immunohistofluorescence (IHF) and flow cytometry (FCM). The spinal cord fibrosis area, neuron survival, myelin preservation, and functional recovery were assessed. RESULTS: Following SCI, CRID3 administration inhibited inflammasome-related ASC and caspase-1, IL-1ß, and IL-18 activation, which consequently suppressed M1 microglia, Th1 and Th1Th17 differentiation, and increased M2 microglia and Th2 differentiation. Accordingly, the improved histology and behavior have also been found. CONCLUSIONS: CRID3 may ameliorate murine SCI by inhibiting inflammasome activation, reducing proinflammatory factor production, restoring immune cell subset balance, and improving local immune microenvironment, and early administration may be a promising therapeutic strategy for SCI.


Subject(s)
CARD Signaling Adaptor Proteins/antagonists & inhibitors , Furans/pharmacology , Indenes/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord/drug effects , Sulfonamides/pharmacology , Animals , Caspase 1/metabolism , Cell Death/drug effects , Cell Differentiation/drug effects , Female , Furans/therapeutic use , Indenes/therapeutic use , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Mice , Models, Animal , Signal Transduction/drug effects , Spinal Cord/immunology , Spinal Cord Injuries/immunology , Sulfonamides/therapeutic use
11.
Mol Med Rep ; 22(1): 33-42, 2020 07.
Article in English | MEDLINE | ID: mdl-32377730

ABSTRACT

Previous studies have shown that caspase-1 plays an important role in the acute inflammatory response of spinal cord injury (SCI). VX­765, a novel and irreversible caspase­1 inhibitor, has been reported to effectively intervene in inflammation. However, the effect of VX­765 on genome­wide transcription in acutely injured spinal cords remains unknown. Therefore, in the present study, RNA­sequencing (RNA­Seq) was used to analyze the effect of VX­765 on the local expression of gene transcription 8 h following injury. The differentially expressed genes (DEGs) underwent enrichment analysis of functions and pathways by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. Parallel analysis of western blot confirmed that VX­765 can effectively inhibit the expression and activation of caspase­1. RNA­Seq showed that VX­765 treatment resulted in 1,137 upregulated and 1,762 downregulated DEGs. These downregulated DEGs and their associated signaling pathways, such as focal adhesion, cytokine­cytokine receptor interaction, leukocyte transendothelial migration, extracellular matrix­receptor interaction, phosphatidylinositol 3­kinase­protein kinase B, Rap1 and hypoxia inducible factor­1 signaling pathway, are mainly associated with inflammatory response, local hypoxia, macrophage differentiation, adhesion migration and apoptosis of local cells. This suggests that the application of VX­765 in the acute phase can improve the local microenvironment of SCI by inhibiting caspase­1. However, whether VX­765 can be used as a therapeutic drug for SCI requires further exploration. The sequence data have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA548970).


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caspase Inhibitors/pharmacology , Dipeptides/pharmacology , Spinal Cord Injuries/drug therapy , Transcriptome/drug effects , para-Aminobenzoates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Caspase 1/metabolism , Caspase Inhibitors/therapeutic use , Dipeptides/therapeutic use , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , para-Aminobenzoates/therapeutic use
12.
PeerJ ; 8: e8367, 2020.
Article in English | MEDLINE | ID: mdl-31921518

ABSTRACT

BACKGROUND: Recent studies have found that probenecid has neuroprotective and reparative effects on central nervous system injuries. However, its effect on genome-wide transcription in acute spinal cord injury (SCI) remains unknown. In the present study, RNA sequencing (RNA-Seq) is used to analyze the effect of probenecid on the local expression of gene transcription 8 h after spinal injury. METHODS: An Infinite Horizon impactor was used to perform contusive SCI in mice. The SCI model was made by using a rod (1.3 mm diameter) with a force of 50 Kdynes. Sham-operated mice only received a laminectomy without contusive injury. The injured mice were randomly assigned into either the control (SCI_C) or probenecid injection (SCI_P) group. In the latter group, the probenecid drug was intraperitoneally injected (0.5 mg/kg) immediately following injury. Eight hours after the injury or laminectomy, the spinal cords were removed from the mice in both groups. The total RNAs were extracted and purified for library preparation and transcriptome sequencing. Differential gene expressions (DEGs) of the three groups-sham, SCI_C and SCI_P-were analyzed using a DESeq software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were performed using a GOseq R package and KOBAS software. Real-time quantitative reverse-transcriptase polymerase chain reaction was used to validate RNA-Seq results. RESULTS: RNA-Seq showed that, compared to the SCI_C group, the number of DEGs was 641 in the SCI_P group (286 upregulated and 355 downregulated). According to GO analysis, DEGs were most enriched in extracellular matrix (ECM), collagen trimer, protein bounding and sequence specific DNA binding. KEGG analysis showed that the most enriched pathways included: cell adhesion molecules, Leukocyte transendothelial migration, ECM-receptor interactions, PI3K-Akt signaling pathways, hematopoietic cell lineages, focal adhesions, the Rap1 signaling pathway, etc. The sequence data have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA554464).

13.
Genomics ; 112(2): 2092-2105, 2020 03.
Article in English | MEDLINE | ID: mdl-31830526

ABSTRACT

MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.


Subject(s)
Circulating MicroRNA/genetics , Exosomes/genetics , Spinal Cord Injuries/genetics , Transcriptome , Animals , Biomarkers/blood , Circulating MicroRNA/blood , Exosomes/metabolism , Female , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/blood
15.
Genomics ; 111(4): 986-996, 2019 07.
Article in English | MEDLINE | ID: mdl-31307632

ABSTRACT

The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.


Subject(s)
Macrophage Activation/genetics , Macrophages/immunology , Transcriptome , Animals , Cells, Cultured , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA , Signal Transduction
17.
Int J Mol Med ; 43(1): 209-220, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30431059

ABSTRACT

The present study aimed to investigate the effect of microRNA­183 (miR­183) on substantia nigra neurons by targeting oncostatin M receptor (OSMR) in a mouse model of Parkinson's disease (PD). The positive expression rates of OSMR and the apoptosis of substantia nigra neurons were detected by immunohistochemistry and terminal deoxynucleotidyl transferase­mediated dUTP­biotin nick end­labeling, respectively. Substantia nigra neurons in normal and PD mice were cultured in vitro. The association between miR­183 and OSMR was verified using a dual luciferase reporter gene assay. The expression of miR­183 and the phosphoinositide 3­kinase­Akt signaling pathway­associated genes were detected by reverse transcription­quantitative polymerase chain reaction and western blot analysis, respectively. Cell apoptosis was detected by flow cytometry. OSMR is the target gene of miR­183. The number of OSMR­positive cells and the apoptotic rate of substantia nigra neurons were increased in the PD group. Neurons transfected with miR­183 mimic exhibited elevated expression levels of miR­183, B­cell lymphoma 2 (Bcl­2)­associated X protein (Bax) and caspase­9 and increased apoptotic rate, and reduced expression levels of OSMR, Akt, phosphorylated (p­)Akt, glycogen synthase kinase­3 (GSK­3ß), p­GSK­3ß, Bcl­2, insulin­like growth factor 1 (IGF­1), mammalian target of rapamycin (mTOR) and p­mTOR. The miR­183 inhibitor decreased the expression levels of miR­183, Bax and caspase­9 and the apoptotic rate; however, increased the expression of OSMR, Akt, p­Akt, GSK­3ß, p­GSK­3ß, Bcl­2, IGF­1, mTOR and p­mTOR. The results of the present study provide evidence that the overexpression of miR­183 promotes the apoptosis of substantia nigra neurons by inhibiting the expression of OSMR.


Subject(s)
Apoptosis/genetics , MicroRNAs/genetics , Neurons/pathology , Parkinson Disease/genetics , Receptors, Oncostatin M/antagonists & inhibitors , Substantia Nigra/pathology , Animals , Base Sequence , Behavior, Animal , Caspase 9/metabolism , Disease Models, Animal , Insulin-Like Growth Factor I/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Oncostatin M/genetics , Receptors, Oncostatin M/metabolism , TOR Serine-Threonine Kinases/metabolism , bcl-2-Associated X Protein/metabolism
18.
Neural Regen Res ; 14(3): 542-552, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30539825

ABSTRACT

In traumatic brain injury, absent in melanoma 2 (AIM2) has been demonstrated to be involved in pyroptotic neuronal cell death. Although the pathophysiological mechanism of spinal cord injury is similar to that of brain injury, the expression and cellular localization of AIM2 after spinal cord injury is still not very clear. In the present study, we used a rat model of T9 spinal cord contusive injury, produced using the weight drop method. The rats were randomly divided into 1-hour, 6-hour, 1-day, 3-day and 6-day (post-injury time points) groups. Sham-operated rats only received laminectomy at T9 without contusive injury. Western blot assay revealed that the expression levels of AIM2 were not significantly different among the 1-hour, 6-hour and 1-day groups. The expression levels of AIM2 were markedly higher in the 1-hour, 6-hour and 1-day groups compared with the sham, 3-day and 7-day groups. Double immunofluorescence staining demonstrated that AIM2 was expressed by NeuN+ (neurons), GFAP+ (astrocytes), CNPase+ (oligodendrocytes) and CD11b+ (microglia) cells in the sham-operated spinal cord. In rats with spinal cord injury, AIM2 was also found in CD45+ (leukocytes) and CD68+ (activated microglia/macrophages) cells in the spinal cord at all time points. These findings indicate that AIM2 is mainly expressed in neurons, astrocytes, microglia and oligodendrocytes in the normal spinal cord, and that after spinal cord injury, its expression increases because of the infiltration of leukocytes and the activation of astrocytes and microglia/macrophages.

19.
J Neurosci Res ; 96(7): 1265-1276, 2018 07.
Article in English | MEDLINE | ID: mdl-29377294

ABSTRACT

Ceruloplasmin (Cp), an enzyme containing six copper atoms, has important roles in iron homeostasis and antioxidant defense. After spinal cord injury (SCI), the cellular components in the local microenvironment are very complex and include functional changes of resident cells and the infiltration of leukocytes. It has been confirmed that Cp is elevated primarily in astrocytes and to a lesser extent in macrophages following SCI in mice. However, its expression in other cell types is still not very clear. In this manuscript, we provide a sensible extension of these findings by examining this system within a female Sprague-Dawley rat model and expanding the scope of inquiry to include additional cell types. Quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that the Cp mRNA and protein in SCI tissue homogenates were quite consistent with prior publications. However, we observed that Cp was expressed not only in GFAP+ astrocytes (consistent with prior reports) but also in CD11b+ microglia, CNPase+ oligodendrocytes, NeuN+ neurons, CD45+ leukocytes, and CD68+ activated microglia/macrophages. Quantitative analysis proved that infiltrated leukocytes, activated microglia/macrophages, and astrocytes should be the major sources of increased Cp.


Subject(s)
Astrocytes/enzymology , Ceruloplasmin/biosynthesis , Microglia/enzymology , Spinal Cord Injuries/pathology , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Nuclear/metabolism , Astrocytes/pathology , CD11b Antigen/metabolism , Ceruloplasmin/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Leukocyte Common Antigens/metabolism , Leukocytes/enzymology , Leukocytes/pathology , Macrophages/enzymology , Macrophages/pathology , Mice , Microglia/pathology , Nerve Tissue Proteins/metabolism , Neurons/enzymology , Neurons/physiology , Oligodendroglia/enzymology , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...